Appendix E

ADM and First order Formalism of

Einstein’s Theory

covariant canonical quantization - one resolution - quantizing the space of solutions to the

classical equations of motion.

well-posed initial value problem the classical solutions are

E.1 Intrinsic and Extrinsic Curvature

The extrinsic curvature is defined as the normal projection of the tensor V,ny:

Ko = ¢Sq)Veng

On account of V4 (n.n¢ = 0 we have n°Vyn, =0

Kop := ¢5(gf — nmyn®)Veng = ¢¢Veny

The extrinsic curvature is symmetric:

Kab = Kba-

This follows from the definition of n%, hypersurface orthogonal n® = —3d,7,

Vany := Vo(=0hT) = =000 + 507 = — 0p0u T+ T, 0cT = Vi(—=0y7) = Ving.
~ ~~
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E.2 ADM Metric Formulation

In general the “flow of time” is not in the direction of the time-like normal n,, and it is convenient
to decompose t, into components perpendicular

t¢ = Np® + N°. (E.5)

The quantities N and N¢ are the lapse and shift functions respectively and determine the
projections of the time evolution vector field t* along the direction perpendicular and tangent
to the spacial slice.

The line element in these variables reads

ds? = (N? — N,N)dt? — 2N,da"dt + qupda®da® (E.6)

We have
v —detg = N,/q.

Gauss’ Equation

The curvature tensor in the spatial slice is defined by

Rt 1= 2D}, Dyjuc (E.7)

where D is the covariant derivative of the three metric. We wish to connect this with the
four-dimensional Riemann tensor Rabcd

Rupe'ta = (DaDy — DyDy)ue
Da(qpbqqcvpuq) = Du(6"09":Vpuy)
qpbqqc(pavpuq) - qpaqqc(vapuq) Deqap := 0,
= 2,054 V(@ s0" Vpug) (E.8)

This leads to the relation (exercise)

Rope + KooK, — KK, % = ¢ ,0%,¢" 0" R, ° (E.9)

abc stlpgr >

known as Gauss’ equation.
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Evolution Equations

The change in time of the three-metric g4 is given by the extrinsic curvature

1
Ka = qamenvmnn = §£ﬁQaba

where L5 is the Lie derivative in the direction of n,.

Liqar = 1n°VeGab + qacVon© + qepVan®

= n°Ve(gab + namp) + qacVon© + qepVan®
n(ngVeny + npVeng) + (Vany + Vpng)
(05 +nng)Venp + (85 + nny)Veng
qsVeny + q;Veng
= 2Kg.

2Gpnn® = R+ K? — KK,

where K is the trace of Ky, K = K%qy,.

using the definition of 4Rabcd,
2V Vyne = 4Rabcdnd
D,K% — DyK®, = R.qn’q,
Ra@uauﬁ = gaVRagvguauﬁuﬁVaV@ua — uﬁVgVa

= Vo (PVsu®) — (Vo) (Vau®) — Va(uPVau®) + (Vgu)?

= Vi(Ku'+a') — KoK + K3K)]

R= —Rgaguo‘uﬁ =2(Gop — Ra@)uo‘uﬁ,

and the identity

2Gasuu? = KSK) — KopK*® + R
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contracting

29V, "Vyke = *Ryy. Tka (E.18)

on a and c and using the 3-metric to project b into ¥ leads to a vector constraint

Gasn®q’, = V(K am — Kqam)- (E.19)

Assuming that the 4-metric g4, satisfies the vacuum Einstein’s equation,

Gap = 0. (E.20)
these constraint equations become
C:=R+K?- K%K, ~0, (E.21)
Cp = VY Kam — Kqam) =~ 0. (E.22)
Gauss-Codacci relations
Uplg = vaaegeg (E.23)
e;egvavb = egva(vbeg) — vbegvaeg

= Ouvp — vbegvaepb

= Oavp — egesv" Vaepe
= O04vp — 'y (E.24)
Vplq = Oqvp — L34 (E.25)

The remaining six equations are the evolution equations for ¢, and K, which can be written
in the form

Liqay = 2NKap + Lqab
»CtKab = Nqamqbann - NRab+2NKam mb — NKKab—i-DanN—i-[,N:Kab
(E.26)
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£NQab = N°Dcqap + qacDpN® + qepDa N©
— 2D, Ny, (E.27)

so that

Koy = _(Qab - 2D(aNb)) (E28)

E.2.1 The Action

Using this the action can be written in terms of these variables:

S[N,N,q| = / dt / 3z /gN (KabK“b —-K?+ R[q]) (E.29)

where K2 = K, That is, in terms of the main variables, the Lagrangian density reads

LINN.q] = VaN (KaK® - K*) + /aNRlg]
= VaN (40" KapKea — 4”0 KaKea) + AN Rlg

= VaN(q*q" — ¢ Ky K.q + /GNRq]

4(a*q" — 4*°¢°")(dab — 2D(aNy)) (ded — 2D(cNay)
- Ve s 4 /GNRIg] (E.30)

E.3 The Hamiltonian Formulation

The above form makes the hamiltonian analysis easy. The canonical momentum of the lapse and
shift functions vanish because N and NN, do not appear in the action. The canonical momentum
of the three metric is

o _ 0L D V@@ " — """ ") (qwr — 2D Niy))(dear — 2D Nyr))
8q'ab 8qab 4N
\/a(qac qbd _ qach d )Kc’d’ N \/a(qa aqb b __ qa b qab)Ka’b’

2 2

q
— g (qacqbd _ qachd) + (qcaqdb _ chqab) ch

= Va(@*d" - ¢ Ko

_ \/aGabch ”

- C

= Va(K® - Kq") (E.31)
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7Tab — \/aGadech
— \/a( Kab - K qab)

and the action written in Hamiltonian form reads

so that

where

/ dt/ d’x (”ab%b — V(g% ¢" — ¢ ¢“N K cadap

qN qacqbd qab Cd)Kachd+\/_NR[ ])

(E.32)

/ / 33‘ Waanb + \/_ ac bd qaqud)(Cjab - NKab)ch + \/aNR[QD

7% — { Va(q*ad" — ¢ ¢ Kop Keq — /aR[g ]}

\/—( ac bd aqud)QD(aNb) ch)

_ QN(a'Db)\/a(Kab _ qabK))

[t [ (5 - NVa{ELE K~ Rlal) - 28(Dar))

SV Noq.) = [ dt [ (140~ NC(r,) — 2NC(m.0)

C = G gpegm®rcd — VaR[q]

is the scalar constraint, or Hamiltonian constraint, and

cb = Dawab

is the vector, or diffeomorphism constraint. Here
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1
Gabed = == (ac@bd + Qaddbe — dabded) (E.37)

2/

which is called the DeWitt super metric.

Gapear™n = %ﬂ(QaCde + Gadbe — Qavded) VI(K® — ¢V K)/q(K“ - ¢“'K)
= g(QaCde + Gadve — Gabded) (KK — ¢ KK — ¢ KK + ¢"*¢“'K?)
= g(QaCde + Gadbe — Gavded) (KK = 2¢ KK + ¢"¢“' K?)
_ g ((QKabKab — K?) - 202K — 3K)K + (3+3 — 9)K2)
- /q (K“bKab - K2) . (E-38)

The constraints C' and C'® must vanish because of the variation of the lapse and shift functions.

E.4 Stuff

A similar calculation shows that the inverse spatial metric is given by

Vab = 0y + n'ny (E.39)

E.5 The Cauchy Problem

The data (X, gap, Kap)

[o¢]
1
903(Q) = 9ap(P) + gap, o(P)a’ + > Eaggaﬁ\P(xO)". (E.40)
n=2
1
Roy = —igabgab,oo + Moo = 0, (E.41)
Roa = g% Mo, =0 (E.42)
0a 29 Gab,00 T Moq ) .
1
Ry = —§googab,oo + My, = 0, (E.43)

¢ under-determination The system does not contain goa,00
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e The system has represents ten equations in six unknowns gg 00; hence we have a problem of
over-determination. compatibility requirements for the initial data.

Rp =0, G2=o0. (E.44)

The first six equations are evolution equations for g, 0o and the last four equations are constraint
equations which the initial data must satisfy

Einstein’s equations

Gmunu =0

the equations Gy, = 0 serve as constraints on the initial data for Einstein’s equations, while
the remaining equations describe time evolution. l.e., only for certain choices of a metric and
its first time derivative at ¢ = 0 can we get a solution of Einstein’s equations. In fact, Gy, can
be calculated knowing only the metric and its first time derivative at ¢t = 0, and the equations
saying they are zero are the constraints that this data must satisfy to get a solution of Einstein’s
equations.

In classical general relativity, Go; not only gives one of Einstein’s equations, namely Gg; = 0,
it also “generates diffeomorphisms” of the 3-dimensional manifold S representing space. Just
as in classical mechanics, observables give rise to one-parameter families of symmetries. For
example, momentum gives rise to spatial translations, while energy (aka the Hamiltonian) gives
rise to time translations. We say that the observable ”generates” the one-parameter family
of symmetries. This is (roughly) what is meant by saying that G, generates diffeomorphisms
of S. Similarly, Ggg generates diffeomorphisms of the spacetime R X S corresponding to time
evolution.

The constraints corresponding to Gg; where ¢ = 1,2,3 impose invariance under spatial active
diffeomorphisms. Invariance under temporal active diffeomorphisms corresponds to Ggg the
constraint.

E.6 Gravitational Hamiltonian

1

5= T6ra

/ d*2/—g9% Ry (E.45)
\%4

68 = /Vd‘*x ((W—g)gabRab +v/=9(09"") Rap + v _ggabm“b) (E.46)
5/ =9 = /—99a509?° /2 and 69 = —gac09“%ga

1
S = /V d*zy/~g <Rab —~ §g“bR> 59" + /V d*a\/=g9"" 6 Rap (E.47)
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Last term of (E.47)

/ d*z/—gg""6Ry, = / V=gd*zV (9" 6TE, — g*oT%,)
v %

= / X (g™0T, — g™oTS,)
ov

= /8 y \W|V2dBzenc(g®0Te, — geoT%,) (E.48)
variation of the metric connection
1
laploy = 596d(5da,b + 09av,a — Yab,d) (E.49)
1 ac bd 1 ab cd
3979 0gm.a| = 599 0gaap (E.50)
ov ov

where we have simply swapped around the dummy indices to make comparison with (E.49)
easier.

ab sTc
or E.51
g ab v ( )
ns = n(en®n® + h™)(8geb.a — Gab.c)
= nchab((sgcb,a - 5gab,c (E.52)
no = —habéab,cnc. (E.53)
E.6.1 Boundary Term
K = V.,
= (en®n® + h®)Vyn, it follows from V,(n%n,) = 0 that n*Vyn, = 0
= h%Vn,

= h®(Dyng — Tn,) (E.54)

As the spacetime metric ¢* is taken to be fixed at the boundary the variation of h* is zero
there. the variation is
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K = —h“béFcbnc
= —§hab[5(3bgda) + 6(0agar) — 6(Dagap)In”

= SH5(Daga)n’

(E.55)

where we have used that the tangental derivatives of dgq, vanish on OM (i.e. §(h*d gq) = 0).

The variation in boundary term

7{ V|h|dzeK
oM

is
0SB :j{ VIh|d3zeh®™5(d.gap)n®
oM
= T6x G/ \/\gd4xR+7{ Vhd3ze(K — Ky).

E.6.2 Constraint Algebra

Classically, the constraints satisfy the following algebra (neglecting boundaryterms)

{G(N),G(M)} = —G(IN,M])
{D(N),G(M)} = —G(LzM)
{D(N),D(M)} = —D([N,M])
{G(N),H(M)} = 0
{D(N),H(M)} = —H(LzM)
{H(N),HM)} =

ON) - _ —INC(q, P)g + 2Ng V2R, — =)

0qap 2 2

+Nq1/2(Rab _ Rqab) _ q1/2(DanN o qachDcN)

SC(N)

1
_ ~1/2
o5 =2Nq~ " (Pap — §anb)
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o _[0f 6 58
T )5 0p% 6qap 0P 0qap

(f }_/5f og  Of dg
9 b)) 5ﬁab 5Qab (5ﬁab 5Qab

Qab Qab"i_ﬁ%—’_o(EQ)

- - of
ab s ab € +0 62
P P " (€%)

If f is C(N) then we should have (at least on the constraint surface)

SC(N)
&Jab

5C(N)
(5ﬁab

= —Lgp™ and

Gab > qab T+ EENQab + 0(62)
ﬁab — ﬁab + Eﬁﬁﬁab + 0(62)

2D Ny = L §54ab

We will need

6 = qq™0quy  ORwpq™ = Dgv® for v = —D*(q"dqy.) + D°(q*Sgpe)

5(q"qw) = 6(68) =0 = 6¢" = —¢*°¢"*5.q

Pab = D°Gacqbd, b= 0"qup

0Dab = QaCdeéﬁCd + QﬁCded(sQaCa op = Qabéﬁab + ﬁab(SQab

Variation of C'(N) under independent variation of qg (6p%° = 0) is
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_ —ab ~ 1.
SC(N) = 5/ZN(—Q1/2R+Q 12(p bpab—§p2))

1
= [ V(R R 0 L)+ 25— 7))
>
1 1 _ ab~ 1.
= —/ N(§q1/2q“b5qab72 1 ¢Y25R + 54 24 5 (5% Pap + 51?2)
»
- 1
—2¢7 12 (prep’, — 5pch)5qab) (E.73)
—/ Nq1/2(5R = —/ qu/Zé(Rabqab)
)

- / N¢'2(6Rapq®™ + Rapdq™)

= / N ql/ ?(Da[D*(¢"qse) — D"(¢"“Sqe)] +Rabqacqbd5ch)
(E.74)

Variation of C'(N) under independent variation of 5% (8qq, = 0) is

_ —ab ~ 1.
SC(N) = 5/ZN(—Q1/2R+Q 2(p bpab—§p2)>
1

= 5/ Ng Y2 (55 gueqoa — 5P %)
>
= /z N~ V2 (25 0cqradp™ — PO (5™ qup))

1/2/~ 1. a
= /EQNQ 1/2(pab - inab)ép ’ (E.75)

f() = /2 Mot L F (g, ) (E.76)

5f M) 0f(M)

(@ rony = [ ~2gr™ g - L5 )
- » afa... c...d afa c...d
= /zM bc...d{_[']\?p b(sz)_»cﬁ%b(Tl;b)}

_ _/EMa...bcmd E]\? Na...bcmd(qvﬁ)

S R Y ATy
= f(LyM) (E.77)
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{C(N),C(M)} = C(L M) = C([N,M)]) (E.78)

{C(N),C(M)} = C(LzM) (E.79)

we need only to include the last term of (E.65).

5C(N) 6C(M)
b 5Qab 525ab

1/2,~ 1
_ /Z (= ¢'*(D*D°N = ¢ D°DeN)) (2M g™ (haty = 54u)) — (N > M)

{C(N), C(M)}

— (N < M)

1
= / —QM(DanN — qachDcN)(ﬁab - iﬁQab) - (N = M)
b

= 2 /E (8" N)D* (M (pay — %ﬁQab))] + %OCN 9°M — (N < M)

= 2 [ @N)MD" (G~ i) — (N = M)

= Q/E(MabN — NO"M)(qacqpa — %QabQCd)DaﬁCd

— [ ~2NOM — MO N) 4 Do D)

= /Z —2(N&*M — MO*N)qapD.p>

= C(K), (E.80)
(some terms have been neglected because they were symmetric in M and N), where K% :=
(NO*M — MO°N) = q®*(NOyM — MO,N).

Repeat this proof for tetrad first order formulation in appendix

E.7 First Order Formulation of Einstein Equations

E.8 Palatini Method in the Connection Formulation

The connection dynamics perspective to suggests re-interpreting gravity as a theory where the
metric becomes a derived variable, with a frame field e and (Lorentz) connection w the sole
primary dynamical variables - the so-called Palatini Tetrad Formalism.
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E.8.1 Method I

The connection V, action on Vs is

VaVor = 0aVor — Ty Ver + Tof Vs (E.81)

Obviously if we calculate (V,V, — V3 V,)Ve we retrieve the usual formula for the curvature,

2V, Vi Ve = Ry Vy (E.82)

We want to calculate the commutator on V. First we get

VoViVi = Va0V + T,/ Vy)
= 0u(OWVr + Ty V) =T (Vi + T/ Vi) + T K (06 Vie + Ty V) (E.83)
As T'¢; is symmetric in a and b it will not contribute to the commutator and we get,
(VaV = VeVOVE = (00 — 002) V1 + 0a(Ty; V) — 0(T,[ V)
U, X0V — Ty 0. Vi + T, KT vy — T, 5T,
= (8anIJ - aanIJ + FaIKFbK] - FbIKFai{])VJ (E.84)
This defines the curvature RabIJ via
(VaVo — VVo)Vi = R/ V. (E.85)
Writing V. = el V7 and inserting it into (E.82)
Wa = 2V,VyVe
= 2V, Vy(elVy)
= 2elV,VyVi
= elR,, edVy (E.86)

where we have use that Vaeg = 0. Since the above is true for all V;, we obtain:

R, = R, eled (E.87)

abc
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The Ricci scalar is given by g** Ry, = gabRacbc. Using the previous expression we find

R, = Ryoeles. (E.88)

ach

Contracting over the two remaining spacetime indices then allows us to write the Ricci sclar in
terms of the curvature of the spin connection and tetrads,

R = gabRacljelI)G?] = Rabljeclle?]' (E89)
The torsion tensor
T% = 9e$ +wj 15 =0 (E.90)
The Einstein equations
€abed (€3 RS + Aedeles) = 0. (E.91)
€abed (RS + AeGeld) = 0. (E.92)
implying
R$ + Aefrely = 0. (E.93)
Variations
onry = 5(61}ebj) (E.94)
= 56?6&] + 561,]61} =0 (E.95)

and contract this by e*/ (at this point we assume the metric to be non-degenerate) and note

epyet’ = 0y we arrive at

oed = —eb e . (E.96)

The variation of the curvature is

5Rab 1J = a[a(;wb}lj + 5w[aIwa]KJ + w[aIK&ub]K‘] (Eg?)
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(5wb = Cdb wb
1J 1J ~, 1J
5w/b = w,b — w/b
= (007wt — 8,0 — (OO .0t — 8,0")
= 0070w, "

DaTbIJ :8aTbI‘]+TbIKw JK+waIKTb JK+FZIJTCIJ

a

1J 1J IK J IK J
D[aTb] = a[aTb} + T[a wb] K +W[a Tb} K

with the last term missing because F‘fab] =0.
5RabIJ = D[aéwb}IJ
3(Djaeyy) = Oadety + dwl, sei) + wi ey
depy = —

E.8.2 Method II

We introduce an arbitrary covariant derivative via

D Vi = 0,Vi + w7 Vy.

(E.98)

(E.99)

(E.100)

(E.101)

(E.102)

(E.103)

(E.104)

(E.105)

Where w,;” is a Lorentz connection (the derivative annihilates the Minkowski metric 77;). We

define a curvature via

Qu’ Vi = (DD — DyDa) Vi

and by a calculation similar to (E.84) we obtain

I _ I K. J K J
Qup " = 20wy~ +war Wyr™ — Wy Wak

The Ricci scalar of this curvature can be expressed as e?ebJQ abI 7. The action can be written
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Spn = /d4x e eteh 0,1’ (E.106)

We introduce a connection compatible with the tetrad via Vae? = 0. The difference between
these two connections when applied to a tensor with purely internal indices is

C./'Vi= (D, -V )V; (E.107)
We would expect V, to also annihilate the Minkowski metric n;; = ebjef’] and therefore,
0 = (Do—Va)irs

Cofnics + Cy f ik
Carg + Cayr- (E.108)

Implying Cory = Cyjr- The derivative defined by (E.105) only knows how to act on internal
indices. However, we find it convenient to consider a torsion-free extension to spacetime indices.
All calculations will be independent of this choice of extention. Applying D, twice on V7,

D.DyVi = Du(VsVi+ Cy' Vi)
= Vao(VoVi + G/ Vi) + C K (ViVik + Coll Vi) + Ty (VeVi + Cop Vi (E.109)

where fzb is unimportant, we need only note that it is symmetric in a and b as it is torsion-free.
Then

Qu’Vs = (DaDy — DyDa)Vy
= (VaVi— VVa)Vi 4 Va(Co /' Vi) = Vi(Co Vi)
+C, SV Vi — G, 5V Vi + C, KOV - €, KOl Vs
Rap’ Vi + (VaCyr” = ViCof” + C KOy = G, K Co ) Vit (EA110)

Hence

Q' = Ry =2V, Cy 17 20, Cy ! (E.111)

a

DoVi = 0.Vi +w,; Vs = VoVi + C,f V)
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the variation with respect to waIJ (keeping the tetrad fixed) is the same as the variation of the
resulting action with respect to C,;/. Substituting (E.111) into the action (E.106) gives

e / d' e gl (R ™ +291,Cy 17 + 20,15 Cy ) (E.112)

The first term does not involve C, /. The second term is a total derivative. From the last term
we have from varying with respect to C, I‘] ,

g /ﬁ 4 Mic bl K N
0 = diz e 2eMee C L Oy
5C,;7 N
= 626M[Ce?\]f (020340 Corc ™ + Corf* 86555 )

= e2(evef 0, N 4 Ml Cy ) (E.113)

or

G[IaGI;}(CbJK + GK[bGZ]CbK[ =0

or
Cyelee oy Felrell — . (E.114)
where we have used Cpi; = —Cpr. This can be writtem more compactly as

exreno N e, =o. (E.115)

(eg\(}e%é[]‘f 5?1 ) is non-degenerate and so C /X = 0. We will show (following gr-qc/9303032) that
. 1mplies = 0. Fiurst we define the spacetime tensor fie Yy
E.114) implies C,;/ = 0. Fi define th i field b

Sabe = Carsejel. (E.116)

Then the condition Cory = Cyjr) is equivalent to Supe = Sypp- Now contract (E.114) with ele,
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b b 1
= (CbIKe[ﬁ-e}—l-CbJ e[ae}(—)ele‘] = icblK(e‘}(ebJ—e?(eg)egec‘]
I K ab b I.J
+ §CbJ (efex — efefc)eges
Lo Kol sb b I J
= §Cb1 (0kdc — exdyer)

1
+ §CbJ ((5[6[(6 5K€I€J)

1

= —(C, -

K b _J
o \“el Cypj exer)

1 Kb J I.b.J
+ 5(4CbJ exe, —Cyjere;)

= Oy eleh (E.117)
where we used C’aI = Curynt’ Ca[U]nI =0. As 5,° = CaI‘]eieCJ, we have Sbcb = 0. We
write it as

I

(Cyr’e)el =0,
and as el are invertible this implies

J b
Cb] €; = 0.
Thus the terms C, % eY-e4 and C, Fedeh. of (E.114) both vanish and (E.114) reduces to

Cb[ €K€J CbJ €I€K—0 (E118)

If we now contract (E.118) with ele], we get

g K a I ba J
0= (Cyp ekel — C, fehel)ele] = Cyfefcelss — Cy; 5€K€d

_ K I
= Cy ecef — CJ €d€K
or

Scda - S(Cd)a. (Ellg)

Since we have Sape = Sqpe] and Sape = S(ap)e; We can successively interchange the first two and
then last two indices with appropriate sign change each time to obtain,
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Sabc = Sbac

I ||

%CQ SCQ | tlo

f=al o S
Q
Q

Implying Sy = 0, or

1.J
Carsepe. =0,

and since the ef; are invertible, we get C,7; = 0. This is the desired result.
This tells us that V coincides with D when acting on objects with only internal indices.

We now consider varying with respect to e{) gives. We will need the formula for the variance of
a determinant,

ddet(a) = det(a)(a™");i0a;;.

This implies

_ 15, a
de = ee,de].

o [T (i 0,07
de; 5eJ

) )
= / ze( 5o — 5t ) MY 4 e e (— ; e)QCdMN
e de
[5b5N€M+eN5b5M]Q +€€M€N€bQ
[eMde Sy e JN] +eQ, MNeMeﬁlVeb‘]
= —e(2e50,"7 — Q MV e edel) (E.120)

= €

Il
o

We have
Q1 — —Q MMNVeSedel =0 (E.121)
Substituting QabU for Rab”
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1
SR — §RCdMNe?We§lVe;,7 =0 (E.122)

Multiplying (E.122) by ey, and using (E.88) with Ry, = Rp, tells us that the Einstein tensor
Gap := Ry — %Rgab of the metric defined by tetrads, g, := e{zegmj, vanishes.

E.9 Inclusion of Matter

Rovelli [23]

However, GR is much more than just the theory of a specific physical force. Indeed, GR is a
theory of space and time. It has modified in depth our understanding of space and time are,
radically changing the Newtonian picture. This modification of the basic physical picture of the
world does not refer to the gravitational interaction alone. Rather, it affects any physical theory.
Indeed, GR has taught us that the action of all physical systems must be generally covariant,
not just the action of the gravitational field. Thus, GR is a theory with a universal reach, whose
implications involve the redefinition of our description of the whole of fundamental physics...

Particles and Fluids
E.9.1 Yang-Mills
Natural inclusion connection form of Einstein’s equations
1
Lyy = 5(0)g™ " tx *Fup *Fa (E.123)

Each link is labelled by a spin j; and an irreducible representation of Gy ;.

E.9.2 Klein-Gordan - Scalar Matter Field
Lia =47("0) (9" 0.00s0 + V (4%)) (E.124)

gravity coupled to to a scalar field ¢ with potential V' (¢) with conjugate momentum 7.

The coupled generalized Palatini action is

Slek,wa ¢ = Splel, wal + Sxalel, 4, (E.125)

where
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1 1
S [e?(,w”] %/M d4a:(e)e eﬁ(Qaﬁ -i-%e KLQ ),
Swcleferd) = —an [ d'alom'” e (0,000 (E.126)
M
here e?( and w!/ are respectively the tetrad and Lorentz connection on M, the real number

v,k and apq are respectively the Barbero-Immirzi parameter, the gravitational constant and
the coupling constant.

After 341 decomposition and Legendre transformation, similar to the case in Palatini formalism,
we obtain the total Hamiltonian of the coupling system on the 3-manifold as:

Hiot = /(AiGi + NV, + NCO), (E.127)
>

where A?, N and N are Lagrange multipliers, and the Gaussian, diffeomorphism and Hamilto-
nian constraints are expressed respectively as:

G; = D.E{ =0E! +¢;"AlEf =0, (E.128)
Y, = EbF’b—i—w@aqb_O (E.129)
and
1 iipoa 2V (¢) )1 1
H = e B E] (Fabk + P ean By | + 57+ S EE(000) (950) = 0 (E.130)
p

E.9.3 Fermionic Matter

E.9.4 In the Language of Differential Geometry

el (x) = el da® (E.131)

The spin connection
Wl () = wl j(z)dz® (E.132)
Rl = RY; ,dz® A da® (E.133)
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1 A
Sle!,w!’] = _m/ ergrcn(el Aed A RJw)EL + Eel Ael nef Aeln) (E.134)
M
S(w,e):/ tr(e Ne N F). (E.135)
M

OF = d,bw, (E.136)

S = /6tr(e/\e/\F)
M

= /Mtr(2(5€/\e/\F—|—€/\e/\(5F), (E.137)
using (E.136) we obtain
08 = /M tr(20e Ne ANF +eNeAd,ow). (E.138)
Integrating by parts,
5S:2/M tr(dfe Ne NF —eAdye N ow). (E.139)
eANF = 0 var. ofe
eNdgse = 0 var. of w. (E.140)

The condition e A d,e = 0 implies d,e = 0. This equation implies I is torsion-free, hence equal
to the Levi-Civita connection of g. We then use this in e A F' = 0 and obtain the metric vacuum
Einstein equation.

E.10 Self-dual Connection Formulation

E.10.1 Self-dual Curvature

We will need the totally antisymmetry tensor or Levi-Civita symbol, e¢rjir. Recall that this
is equal to either +1 or -1 depending on whether IJK L is either an even or odd permutation
of 0123, respectively, and zero if any two indices take the same value. The internal indices of
erji 1, are raised with the Minkowski metric 77[ J
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Given any anti-symmetric tensor 777, we define its dual as

1
«T1) = €KL L KL (E.141)

The self-dual part of any tensor T/ is defined as

1 1
+r17 = 5(T” - 5eKL”TKL) (E.142)
with the anti-self-dual part defined as
1 .
-1 = 5(T” + %EKL”TKL) (E.143)

(the appearance of the imaginary unit ¢ is related to the Minkowski signature as we will see
below).

Tensor decomposition
Now given any anti-symmetric tensor 77, we can decompose it as

. X .
— %eKL MTRE) 2Tt 4 %EKL LJpKLy — +plJ | —plJ (E.144)

where TT77 and ~T!7 are the self-dual and anti-self-dual parts of T respectively. Define the
projector onto (anti-)self-dual part of any tensor as

p 1

S (1F ). (E.145)

The meaning of these projectors can be made explicit. Let us concentrate of PT,

1

Q(TIJ ot wp UTED) = 717,

1 . 1 1 TK[
(l 1 )IJ (2 (1 Z*)j )IJ 2 (511(5JL ZQEKL IJ) 26

Then

+plJ (P(:I:)T)IJ
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The Lie bracket
An important object is the Lie bracket defined by

F, G .= FIEq - G R, (E.147)

it appears in the curvature tensor (see the last two terms of ()), it also defines the algebraic
structure. We have the results (proved below):

PO QY =[PP E G = [F, PG = [PHF, PR G (E.148)

and

[F,G] = [PTF,PTG]+ [P"F,P G]. (E.149)

That is the Lie bracket, which defines an algebra, decomposes into two separate independent
parts.

Identities for the totally anti-symmetric tensor

The internal indices of €;jx 1, are raised with the Minkowski metric 77[ 7. Since 177 has signature
(=, +,+,4+), it follows that

I1JKL
€ = —€IJKL-

to see this consider,

0123 0I,1J, 2K 3L
€ = nn-n N €JKL

= (=D(+1)(+1)(+1)eo123 = —€0123-

We then have the identities,

GI‘]KOELMNO = —65[IL5}\]/1(5]IV(} (E.150)
EIJMNEKLMN = _45[IK5i}
= —2(6%07 —oLsd). (E.151)
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Definition of self-dual tensor

Therefore the square of the duality operator is minus the identity,

1
wx T1 — ZeKLIJGMNKLT MN _ _plJ (E.152)

The minus sign here is due to the minus sign in (E.151), which is in turn due to the Minkowski
signature. Had we used Euclidean signature, i.e. (+,4,+,+), instead there would have been a
positive sign. We define ST/ to be self-dual if and only if

xS = 517, (E.153)

(with Euclidean signature the self-duality condition would have been xS/ = S17). Say ST/ is
self-dual, write it as a real and imaginary part,

1 1
IJ _ Yyrld | iy 0J
S = 2U + ZQV .
Write the self-dual condition in terms of U and V/,
1
>l<(U—IJ _l_Z-VIJ) — §€KLIJ(UKL +’LVKL) — Z-(UIJ +’iVIJ).
Equating real parts we read off
1J 1 IJ77KL
V = —_ﬁKL U
and so
i

_EKLIJUKL) (E154)

1
gl — LlJ _
2( 2

where U is the real part of 277/, Now given any tensor 777/, we can decompose it as

1 ) 1 ;
TIJ  _ §(TIJ _ %EKL IJTIJ) 4 5(TIJ 4 %EKL IJTIJ)
= *triJ4 -l (E.155)
since *( TT1) = 4 ¥T1 and *( ~T7) = —i —T!/, +T!7 and ~T!/ are the self-dual and

anti-self-dual parts of 777,
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Important lengthy calculation

The following lengthy calculation is important as all the other important formula can easily be
derived from it. From the definition of the Lie bracket and with the use of (E.150) we have

1
«[F+G)1T = §€MNU(FMK(*G)KN — (x@)ME )
1 1 1
_ §€MNIJ(FMK§€OPKNGOP _ §€OPMKGOPFKN)
1
_ Z(EMNIJEOPKN enareopNEYPM GOP

1

— §€MNIJ€OPKNFMKGOP

1

§€MIJN
1

_§6KIJN

1
= 5(55 6Lt + 650564 + 08 6L,62

— 55 — 155430, — 5oL, 61 4 GO”
_ %(FJKGKI+FKKGIJ+FIKGJK

~ P GIK _ FE T R GRY)
- _FIKGJ L KR/

= —[FG (E.156)

K ~OP
ecoreNFy G

M ~OP
ecopmNnF G

That gives the formula

«[F,*G)!T = —[F,G]"7. (E.157)

from which everything else is then easy to derive.

Derivation of important results

First consider

«[«F,G)7 = —«[G,*F)"’
= [G,F" =-[F,G)".

where in the first step we have used the anti-symmetry of the Lie bracket to swap *F' and G,
in the second step we used (E.157) and in the last step we used the anti-symmetry of the Lie
bracket again. Now using this we obtain
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«[F,G]Y = x(—x[xF,G]')
= —xx[xF G
= [xF,G]".

where we used ** = —1 in the third step. Similarly we have

*[F, G]IJ — [F, *G]IJ

Now if we took *[F, G]!Y = [«F,G]!” and simply replaced G with *G we would get *[F, *G]!/ =
[*F,+G]!Y. Combining —[F,G]!” = [F,*G]!’ (E.157) and *[F, *G]!/ = [*F,*G]!’ we obtain

—|F, G]U = [«F, *G]I‘].

Summarising, we have

«[F, Gt = —[F,G]!7 = «[xF,G]!’
«[F,G) = [«xF,G)l = [F,*G]!’
[«F,«G)" = —[F,G]"’

Then

(POEGYY = S(FGM Fix[FGI")
= S(FGI + [+ F.GI")

= [PORG

Similarly we have (P& [F,G))!Y = [F, P*)G]!Y. Now consider [P+ F, P~G]!/,

[PTE,P-G)Y = i[(l—z‘*)F,(l—i—i*)G]U
1
= RG-S GV + HiF Gl + G
4 4 4 4
_ 1 1. o, L. 1 IJ
= 4[F,G] 41[*F,G] +4z[*F,G] 4[F,G]
= 0.

Similarly [P~ F, PTG]!’ = 0. This implies

(PP E G = [PHF,PHG + PHG = [PHE PHEG.
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Summary of main results

Altogether we have,

PHF QY =[PP FE Q) = [F,PHG = [ PHF,PHGI (E.163)

We then have that any bracket splits as

F,G)"Y = [PTF+P F,P G+ P F"/
[PTF, PTG + [P~ F,P~G)". (E.164)

into a part that depends only on self-dual Lorentzian tensors and is itself the self-dual part of
[F,G]' by (E.163), and a part that depndends only on anti-self-dual Lorentzian tensors and is
the anit-self-dual part of [F,G]!/ again by (E.163).

We can write

so(1,3)c = so(1,3)¢ + so(1,3)¢ (E.165)

where so(1, 3)(%r contains only the self-dual (anti-self-dual) elements of so(1, 3)c.

Self-dual curvature

1J

Instead of considering the connection w,’” we will consider its self-dual part, +Aa1 J with respect

to the internal indices, that is,

1
~ 1J 1J MN
itA = 9EMN TA,
+ A, is related to w,’’ by
1 i
1J 1J 1J,, MN
tA = 3¥a " T JEMN W (E.166)

Define F ab‘] K as the curvature of the self-dual connection,

F bIJ =V, +AbIJ —V, +AaIJ + +AaIK +AbKJ _ +AbIK +AaKJ (E.167)

a

We use the above results to show this corresponds to the self-dual part of the curvature of the
usual connection:
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FabIJ - v, +AbIJ —-v, +AaIJ + +AaIK +AbKJ o +AbIK +AaKJ
= (Va(PTwp)! = Vy(PTw)) 4+ [PTwa, PTwy)t’

= (P 2V + (P [wa, wp))”

= (PTQu)" (E.168)

Which was the desired result. Thus we have,

) :
F' = 3 (QabIJ - %GMNIJQabMN)
]
= Viwy +wg oy’ — §6MNIJ(v[awb]MN o Moy (B.169)
Using
2V iawy? + [wa,we) = (PT2V 0wy’ + (PT2Vwy)" + [PTwa + P~ wa, Prwy + Pwy)"’

= ((P*2Vwn) + [Ptoe, Pra! ) + ((P~2Vw)" + [Pmwe, Pw)').
(E.170)

we see that the Palatini curvature decomposes as,

QabIJ[w] = QabIJ[+A] + QabIJ[_A] (El?l)

and therefore the Palatini action can be written in terms of a self-dual and anti-self-dual part
which depend respectively only on the self-dual and anti-self-dual connections.

E.10.2 Self-dual Action

In the self-dual formulation of general relativity, the variables are a self-dual Lorentz connection.

The other variable is a complex tetrad. The action in the self-dual formulation is built using
the curvature of the self-dual Lorentz connection.

As in the Palatini formulism, one can use the tetrad to define a metric g on M by

Gap = nIJeéeé

However, because the tetrad is complex, the metric is now complex.
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The self-dual action can be written
Spn = / d*z e e§e Fy 17 (E.172)

We introduce a connection compatible with the tetrad via VaeI} = 0. We will like to proceed
analogously as with the Palatini case and show that one of the equations of motion implies that
TD, is the self-dual part of the unique, torsion-free covariant derivative V, compatible with e{l.

If FaIJ denotes the Chrristoffel symbol of V,, we define the self-dual part ¥V, of V, by

TV 1 i= Oqur + +FaIJ'I)J, (E.173)

where +I‘aIJ is the self-dual part of FaIJ . The difference between these two connections when
applied to a tensor with purely internal indices is

TC V= (TDy— V)V (E.174)

Note that TC 7 = A 7 — *T' 7 is indeed the self-dual part of C 7.
al al al al

Fy' = TRy =2V, tCoy T + 210, "F T Oy (E.175)

a

The self-dual action is written as

Spy = / d'z e efes( TRy + 2V, TOy T + 270, Oy (E.176)

Variation with respect to *C’b] IJ produces

o, Kt oy et — . (E.177)
where we have used TCpxr = — TCyrxi. This can be writtem more compactly as
ehrendtt ol o, =o. (E.178)

The variation with respect to the tetrad goes along the similarly except €2, IJ replaced every-
where by FabU.
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E.11 Ashtekar’s Canonical Formalism

GR can be expressed in terms of a complex field A% (x) and a 3d real field E¢(x), defined on a
three-dimensional space ¥ without boundaries, satisfying the reality condition

Al — Ai = YU [E] (E.179)
where ¥ is defined in appendix A. The theory is defined by the Hamiltonian system

~ 08

a

z(x): 5142(%‘)

(E.180)

This indicates that the quantity E%(z) is the momentum conjugate to A% (z). In Maxwell and
Yang-Mills theories, the momentum conjugate to the three dimensional connection A is called
the electric field.

The Lagrainian and Ashtekar Lagrangian give the same equations of motion from the varaiation
of the spin connection, and once this equation is solved and substituted into, the two Lagrangians
differ only by a term that vanishes due to the Bianchi identity.

E.12 Generators of Symmetry Transformations

{Ef(x),G(y)} = 7", E} (E.181)

This Poisson bracket generates an infintesmal roatation on the internal space index of Ef.
R(60)9 = § + IR A;.

{AL(2),G(y)} = Dady, (E.182)

¢ i

The theory contains the “vector” constraint ()

V(N) = /Z dNEY"FY, (E.183)

which when combined with the Gauss constraint, gives the statial diffeomorphism constraint

D(N) =V(N) — G(ALN?) = / Br[NEYF, =
>

= / d3z[EY0, AL — 9y(EY AY)) (E.184)
)

1092



The diffeomorphism constraint generates the in intesimal change in the fields along the diffeo-
morphism flow. When applied to a Wilson loop we dont need to include the Gauss gauge term
G(ALN%) and there is no difference between the constraints V(N) and D(N).

{ALD(N)} = LgAi,
(E“,D(N)} = LzE™ (E.185)

The Hamiltonian constraint generates

{AY H(N)} = 23NeFEYMEE (E.186)
{E“ H(N)} = —28NDy(NEYE). (E.187)

E.12.1 The Gauss-law Constraint Generates (Gauge Transfor-

mations
=7 . 0w
Ei(x)¥ = _ZéAi(a:)' (E.188)
) — [) + e < / dgl‘Avim> ) (E.189)
U[A] — U[A] + € / By Y (E.190)
§A (z) '
Integrating by parts, this gives us
U[A] — U[A] +e/d3x(viA) ov (E.191)
§A (z) '

But this is just the first terms of an infinite-dimensional Taylor expansion, and we have

U[A] — U[A + eVA] (E.192)

which is a gauge transformation. The constraint operators are the generators of the gauge group.
It follows that any physical state, i.e. any state satisfying

V' Ei(z) 1) =0, (E.193)
must be gauge invariant.
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E.12.2 Incorperating Matter in the Quantum Theory

fermions at open ends of loops - natural gauge invariant objects.

Lattice Gauge Theories

E.13 Toy Model: Free Particle described using Half-

Complex Coordinates.

E.13.1 Complex Variables and Reality Conditions

Canonical transformation

oF

PQ —H(Q,P) =pj—H(q,p) — =

ot

OH

ap ~ ¢

OH .

%_—P
P = 30" Q=q,

Fi(q,Q) = —qQ + ipQ

Q=qP=z=q—ip
z =q—1p.
In terms of these variables the Hamiltonian reads
Ho(x, 2) = ——(z — 2)2

Consider z as a configuration variable

To find the solutions corresponding to real x and p, we have to impose the condition
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z+zZ=2x (E.200)

which z is the real part of z

Equation (E.200) is called the reality condition.

E.13.2 Quantization in Compex Coordinates.

A complex cononical transformation x — x, p — x —ip

If we know what x and p are then we know what x and z are and conversely if we know what =
and z are we know what x and p are; so they are equivalent descriptions.

a free particle described in the coordinates

The Shrodinger equation in complex coordinates is

(2, d 1 0 2
ih d’é’i ), (h&,z> Y(zt) = —5 (7‘@ - Z) U(2,1). (E.201)

0
t—op—. E.202
24z h@z (E.202)

Now, equation (E.202) only makes sense after we have specified a the scalar product, because
the adjoint of an operator is defined in terms of the the scalar product.

(4, 9) = / dzd=f (2, 2) 0D H(2). (E.203)

We will know what the inner product if we can specify f.

(z+2)f(2,2) = —QH%f(z, Z) (E.204)
This gives
f(z,2) =e” =i (E.205)
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E.14 The Holst Action

S(B,w) = 1o / 2| E|ECEL P KL (w) (F.206)
where
11
Pl =6oilsl — %e”m. (E.207)

E.14.1 341 Decomposition of the Holst Action

We relate the curvature of the Ashtekar-Barbero connection to the curvature of the spin con-
nection,

Fap = 20Ty + BKY) — €T + BK)(T) + BKY)

= 20, (T} + BKy) — 5l (04 + BED(T + BEE) = a > d)

_EZ,k
2 J
— 20T}y — €LY — B(200K) — (T, K + KLT)) - 8% K K

— Fiy— 020K — € (1], K — K[J rh)) - 62 KK

= Fiy— B0, K} — 2e"jkr{ Ky — 0% KKy

= Fy, — 20V Ky — 0%€ ), KKy (E.208)

E.14.2 The Diffeomorphism Constraint

For the diffeomorphism constraint we have (we introduce here a negative sign so that the con-
straint appears with a positve sign in the Hamiltonian, recall the basic form £ = pg — H)

a a \/_ J 1J KL
NeC, = —fBniN Py F,
C. BN () P s Fan
= BN°EYPY F,, "
- ; 1
= QN°E? (Faboj 5 ﬂ(—: TP )
= 2BN°E? <8[awb}0j+w[a0kwb]k 23 kz(a[awb} +(’J[akL(’Jb]Ll)>

5(
a 7 j j m 1 m
= 2N°E? <a[aA;] — B¢ WL + §ejkl(K[’flK£] +wp wb]ml)> (E.209)

= Q/BNaEb <8[GK]} + K[a b]k 28 Fb] +e€ kl( [kowb}ol + w[akmwb]ml))>
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J

where we used ¢, = —¢,,, K! =w® and w,’ = ¢ T o,

. Also that w[akowb]ol =W Ok

a wb]

km

The term Wiy Wy ni becomes,

6jklwakmwb I _ 6jkl(6km Fn)( l Fp)

_J km nyp
= €4cn meaF

= € kl(él (5k nnpnkl)I’ZI’ij
= ¢,k
= e TLTy (E.210)

Continuing with the calculation for the spatial diffeomorphism constraint,

NG = N (20,4 — 5O, TG — 30,k - Khich) )
= AW~?<%9 - 55 emﬂwJ%y+KﬁFa) ;em(ﬂﬁ%] Kﬁk%))
= N°E? <26[ A - 163',{1(1“’[“(11“5,} + B Ky + BKETy — K fZKzl,])>
= N°Ej <28[af42} - %ejm(ﬁfafi} + BT Ky + BTy + 82K Ky)
+ (1+ ) KL}
= N} (20, Af — € (T + BEE)Th + B} + (1 + 52)e), KK} )

— N (fgb +(1+ ﬂZ)EQZKZ;K{)) (E.211)

where in the second line we used € lef“aKé] = —¢€ klI‘[bK | = —¢€ le[laF b = € le[’ZI‘lb]
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E.14.3 The Hamiltonian Constraint

N A} AEy\ p; KL
C = _4WG;E(8WﬂGJ(8WﬁG)P rkrEa

Eepb

— —4ﬂGﬁ2ﬁP”KLFab
E?Eb ¥ )

= —4W052f?§l<55 2ﬁ€]KLF& L)

= —4ﬂGﬂzfygl<F£“§B@]mfhfo+€]%P&Pﬂ>
E?Eb ij i Lj 2 ij

= —47TGQQWJ <28[awb] J + 2w[awa] ]nKL + Eﬁ ]k(a[awb}ko + w[aklwb]10)>
ESES 2 i

— _47r0527ﬂ <F’ + 2K, K ] - 3¢ ! (O —I—w[aleb}l)>
E?Eb 2 k

Substituting in (E.208) in this we obtain,

EZEY B2 +1
C = —4nGRP—_LéY, <]~' + (14 8He  KMKP + 25—~ VaK)
B N + (14 8%k, b 3 [a L]

E EP \/—Ea 5 ﬁ2+1

_ 2771 7g 4 k 2\ _k myon\ 2 J zg

= —anGpi= e k(]—'ab+(1+ﬁ )k K K,,) 4G (swe)\/ 2 Vi K}
EaEb ) .. -

— _4rGR? \/636 A (f§b+(1+ﬂ2)ekmnK;nK§) — (B + 1) EPENY K (E.213)

In a constrained Hamiltonian system, a dynamical quanity is called first class constraint if
its Poisson bracket with all other constraints vanishes on the constraint surface (the surface
implicitly defined by the simultaneous vanishing of all the constraints). A second class constraint
is one that is not first class.

E.14.4 Addition Constraints

The Hamiltonian is then a sum over constraints,
H=[AL Eb = / d'z (AiGi +(1+B)w)’S;+ NC + Naca) (E.214)

— n om b
Sj = ~Cm Kb En
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1 1 6abc

Fa(ZE;)) = 5”’5%601)6604[8[)616 — W(eaiabecj + eajabeci)
6abc
= _m(eaiabecj + €qjOpeci — OijearOpel) (E.215)

Recall e} = EY +nny and in the temporal gauge n; = 0 so

6abc
TEY = — 5 M(EaiabEcj + E,j0pEei — 01 EiOpEL) (E.216)
Obviously
DyE? = OE? — ;K (U] + BK])EL =0 ¢;*K{E} =0
imply

Contracting this the totally anti-symmetric tensor

0= €Z]k(abE~? — Eij/k/FZ/E]I;/) = EljkabE,f - Eijkﬁij/k/FZ/Eg/
i b | sk k <J /" b
= EzjkabEZ - (5;’5]{/ - (%;(5%,)1% Ek/
= OB — (T E} —TJEY) (E.217)

[det(E)| = | det(B)P

E¢ = |det(E)|~V/2E¢

a ]' — a
Pop By = 5l det(B)] Yeijk0a(| det(E)| E})
1 E¢
= —€ip(0,Ef + —E_9,|det(E
1
= S€ijk(0a B} + E{EOu EY) (E.218)
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T ES

or

I‘a(i E;l) + Fa[iE;'l}

6abc

1
_W(EaiabEcj + EajabEci — 5iann8bE?) + Eeijk(aaE,‘j + E,@Eif)aEf)

6klm

1
—TE,?E?E;(EM@;,ECJ- + Eaj@bECi - 6iann8bE§) + §6ijk(8aE](gl + E,‘jE?&aEfl)
1/, ; 1
-3 (€ B} Eg, 00 Ees + €' B Eg, 0y Eui — 76, EVEG 0, L) + Seiik(OuBf + ELELO.E)

1 ; ; 1
5B (ellkEajabEg + " Eqi0, Eff + emlkaingabEgl) + =eiji(OEl + E}EL O, Ey)

2
1 i a 1 i ]
3¢ MEN(EY, — Bf )ES + 3¢ MEEGE?,
1 .
€ Bl (B — Byo + BB, B By (E.219)
E.14.5 Final Total Hamiltonian
H = (4L, B = / d'z (N'G; + NC + N°C,) (E.220)
C, = EVF, (E.221)
N JBEEY i 2\ i 7
C = —AnG* =2 ((—: FR 4214 )K[aKb]> (E.222)
¢ Fk Eapb EeEs
C = —4nGR2 [ 2170 | 9 4 g2l (48 _piyA] — 1 E.223
( Va ( ) Va ( )(4y = T%) ( )

E.15 Biblioliographical notes

In this chapter I have relied on the following refferences:

Eric Poisson

Kenneth smith, Dynamic Singularity Excision in Numerical Relativity.

Robert Bartnik, Jim Isenberg, The Constraint Equations?? or should this be refferenced in
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E.16 Worked Exercises and Detalils

Gauss-Codazi

‘ Gauss’ equation.

Yug = (DyDy — DyDa)uc
= 2qr[aqsb]qtcv7”( qps qqt vpuq)
I II II7

abc

tackle each term separately.

Ropeluq = (I) + (IT) + (I11),

Proof.

D = 24"y (¢ a") (Vod? ) (V)

= 2", 0°ya%e (Vo (0 +nPny)) (Vyug)  using ¢’ ¢’y = ¢

QQT[aqsb]qqc (VenPng)(Vpug)
2q’“[aq5b]qqC (nPV,ng +ngV,nP)(Vpug)
= 0.

We now move to the second piece of (E.224),

() = 20 ,¢"yd s (Voa")(Vyug)

= 20" ,¢"yq"c (Ve(0f + 1)) (Vpug)  using ¢°ya”s = ',

= qu[aqpb}qtc (Vening)) (Vpug)
= 2qr[aqpb}qtc(vrnt)nq(vpuq)>

We will use that u,n® = 0 implies u,Vyn® = —n*Vyug,

= 2qr[aqsb]qtc(v7’nt)(vpnq)uq
= 20,0 yd" (Vrre) (Vpn?)ug
= 2K Kyt

= _(KcaKbd - CbKad)ud’
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(D) = 2¢"(,¢°y4 a”s4"s (VrVpug)
= 2q",@"y4" (V+Vpug)
_ 2q[raq5}bqtc(v[rvp}uq)

= 2¢".0"q" Rypg'u

clrpg s
= 2qraqpbqchdsRqusud. (E.229)
Putting it all together
Rabcdud = (0) - ((KCGKbd - KCbKad)ud) + (qraqpbqchderpqsud) (E230)
As ug is arbritary, this yields Gauss’ equation (E.9).
[
| |
‘ Gauss-Codazi ‘
| |
‘ Details Hamiltonian. ‘
The determinate of the metric can be written e = N, /q
ds> = NZ2dt? — qu(de® + Ndt)(dz® + Nbdt)
= (N2 — g NN dt? — qop NOdadt — oy NOdtdz® — qopdada® (E.231)
N2 - NaNa _QalNa _QaQNa _Qa3Na
—quN°®
= E.232
Jab —qopN? —qab ( )
—qgN?

as can be seen from
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NQ_NaNa _QalNa _QaQNa _QaBNa dt

—au N da?

ds® = (dt,dz', da?, da 915
( ) —qopN? —Qab dx?
—q;ngb dacg

(N? — N,N)dt — qupNda®
—qupNdt — q1pdz®
—qopNdt — gopda®
—qapNdt — qzpdz®

= (N? = N,NYdt? — qupNdadt — dabqe N°dt — da®qqpda® (E.233)

= (dt,dz',dz? dz?)

We now evaluate the determinant (E.232)

—queN’ —qi2 —qi3

det g = (N? — NgN®) det —Qab + g N%det | —guN® —qo2 —qo3 | +
—gN® —q32 —qs3
—quN’ —qu1 —qi3 —queN’ —qn —qi2
—qa2N%det | —qapN® —go1 —qos | + qusN"det | —gauN® —qo1 —gqo2 | (E.234)
—gN®  —gz1 —gs3 —gNY —g31 —q3

Consider the determinate in the second term on the RHS of (E.234)

—quN’ —qi2 —qi3 a1 N' + qaN? + qisN?  qi2 qus
det | —qaN® —qoo —qo3 | = —det | guN'+ gaaN? +qa3sN3 qoo  qo3 (E.235)
—q3N® —g32 —gs3 g1 N+ q3aN? 4+ g33N3 g3z gs3

We use two properties of determinates () and () to write (E.235) as

q11 412 (413 q12 dqi12 (413 q13 dqi12 di3
—N'det | g2 g2 gos | —N%det | go2 g2 qo3 | —Ndet | qo3 g2 go3 (E.236)
431 432 (33 432 {432 (33 433 {432 (33

since the determinant of a matrix with a repeated column is zero (see appendex A) the second
and third terms of (E.236) vanish and we are left with

q11 q12 413
—]\f1 det d21 422 Q23 = —]\f1 det q (E.237)
431 432 433

The other terms in (E.236) are treated analogously and putting it all together (E.234) becomes

1103



detg = —(N?—=N,N%detq— g N°N'detq— quoN?*N?det q — qu3N* N> det ¢
= (=N? + N,N® — quN*N®) det ¢ (E.238)
= —N?detgq (E.239)
Therefore
e =det(eq) =v—9=N,/q. (E.240)

‘ Details (I1.1) Gauss gauge

Derive Eq’s above

G'(x) = Do E™(2) = 0, B (x) + €5, Al () E** () (E.241)

(E%(x),G(y)} = / Py {F9 (), N ()G} = (5.242)

/ Py{AL(z), N ()G} = / Py { AL (z), N ()DL EY ()} =

/dS /d3y§;41;'z )6[aaEaj( ) 5E7Z,7(z/§gl( )Ean(z)] (E243)

4 (x , , é z)E%(z
Jeartn TR - [eovinn A

_ / BN ()% (x — 2)60 B () = (E.244)

i ODJEN(y) i 00BN (y) + € Aa(y) B (y))
/ d*yM (y)iéEg(z) = / dPyM (y) SELC)

- /dSy[f)ch(y) — M (y) A ()] (y — 2)82 = —[0a M7 (2) + €5, M7 (2) AL ()] = (E.245)

‘ Details (I1.1) Spacial diff
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V(N) = / BBNEYF, (E.246)
by
| Details (I1.1) Ham
Fy = 0, A} — b A, + A} Afeiji (E.247)
Obviously
{ALFL} =0 (E.248)
as F éb depends only on the connection field. So that the Poisson bracket is simple:
{ALH(N)} = {A}, ¢VF FLEYEGY = IV FE AL EY B} (E.249)
Using the “product rule” for Poisson brackets this is
[ALH(N)} = e ({AL EbYES + (AL, ESYEY )
= 2R TN (AL BOYES
26 R ES Y, (E.250)

where in the in the second step we used that the field-strength tensor is anti-symmetric in its

spacetime indices. We have proved (E.186).

| Details (I1.1) Ham

Fiy = 0, AL — 0y AL + AJ Aeyjy,

Obviously

{AL,Fl} =0

as F ;b depends only on the connection field. So that the Poisson bracket is simple:

{ALH(N)} = {A}, ¢VF FLEYEGY = IV FE{AL EY B}

a
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Using the “product rule” for Poisson brackets this is

(ALH(N)) = BT (A, BB + (AL, B5)ED)
2Fy, eV { AL, EYVES
2¢ IR ESFY, (E.254)

where in the in the second step we used that the field-strength tensor is anti-symmetric in its
spacetime indices. We have proved (E.186).

| Details (1.2.2)

(W) GO0} = [ [ EadyN @) (4){G (@), 6 (w)} =

o 6GHx) 6Gi(y)  8G (x) 6G)
= / d*2 / &z / dPyN' (z) M (y) [ 5 A,cf(z)) 5Ek((i)) (( )) 5 A,g(é)) (E.255)
/ d%Ni(x)gfl;((?) — Ni(2)el, B (2) (E.256)
[ a3 - D) (B.257)

{G(Ny), G(M;)} = / d>z [Ni(z)ej.kEC’“(z)DaMk(z) — M (2)€}. B (2)Da Ny (2) (E.258)

Jacobi identity

€ijmEmkn T €jmkEmin T Ekim€mjn = 0 (E.259)
{G(Ni), G(M;)} = =G([N, M]) (E.260)
|
‘ Details
{Cn,Cu} = {Cn, (Do A}, — DyAL)ES ER YT (E.261)
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{Cn,Cur} = / B (NO,M — MO,N)(ECEY[EC, Fy)

/ dBr(NO,M — M3,N)(E°E (E.262)
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