
Appendix L

The Loop Representation

introducing heavy mathematical tools, often unfamiliar to the average physicist

to achieve certainty is to work at a high level of mathematical precision.

we search for a mathematical precision is that in quantum gravity

in the absence of any experimental observation at least for the moment by having a
consistent theory

Ashtekar and Isham the representation of the loop algebra by using C⋆−algebra repre-
sentation theory: A/G is the Gelfand spectrum (complex valued, bounded functions on a
compact Hausdorff space) on the abelian part of the loop algebra.

H can be constructed as the projective limit of the projective family of the Hilbert spaces
Hγ , associated to a graph γ in M.

L.1 Loop Representation

quantizing field theories requires one to smear fields, i.e. to integrate them over regions
in order to obtain a well-defined algebra without δ−functions. Usually this is done by
integrating both configuration and momentum variables over three-dimensional regions,
which requires an integration measure.

There is now a different smearing available which does not require a background met-
ric. Instead of using three-dimensional regions we integrate the connection along one-
dimensional curves e and exponentiate in a path-ordered manner, resulting in holonomies.

densitized vector fields can naturally be integrated over 2-dimensional surfaces, resulting
in fluxes
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FS(E) =

∫

S

τ iEa
i nad

2y (L.0)

with the co-normal na to the surface.

The Poisson algebra of holonomies and fluxes is now well-defined and one can look for
representations on a Hilbert space. We also require diffeomorphism group on the repre-
sentation by moving edges and surfaces in space.

Spatial geometry can be obtained from fluxes representing the densitized triad. Since
these are now momenta, they are represented by derivative operators with respect to
values of connections on the flux surface. States as constructed above depend on the
connection only along edges of graphs such that the flux operator is non-zero only if there
are intersection points between its surface and the graph in the state it acts on

L.2 Algebraic Quantization of Loop Representation

Wk(x) = exp(ikx) (L.0)

Ψ(k) :=

∫

dxW ∗
k (x)Ψ(x) (L.0)

{T 0(k1), {T 0(k2)} = 0,

{T 1(k1), {T 0(k2)} = −ik1T 0(k1 + k2),

{T 1(k1), {T 1(k2)} = i(k1 − k2)T 0(k1 + k2),

(L.-2)

Its action on a wavefunction is to affect a translation

T̂ 0Ψ(k) =

∫

dxe−ikxeik1x̂Ψ(x) = Ψ(k − k1) (L.-2)

Simple example of a free algebra

for any finite order polynomial can be generated by multiplication and addition of the
elementary variables

a and x (L.-2)

1557



the associative algebra generated by finite sums and products of these elementary opera-
tors

a0 + a1x+ · · · + akx
k + · · ·+ aNx

N (L.-2)

L.2.1 Loop Algebra for U(1)

Let A be the space of smooth U(1) connections whose cartesian components are functions
of rapid decrease at infinity.

L.2.2 Mathematical Description

Let Lx0
denote the collection (or space) of oriented loops on R3 with basepoint x0. Them

being oriented means there is a certain sense of flow around the loop. We can form a
composition between loops as illustrated in fig(L.2.2) We denote the composition between
two loops α and β as α ◦ β.

(a · b)(t) :=

{

a(2t), 0 ≤ t ≤ 1/2
b(2t− 1) 1/2 ≤ t ≤ 1

(L.-2)

For any path α, we denote by α−1 the inverse loop formed by transversing α in the
opposite direction.

can be found in section C.16.4 and in the maths glossary.

The set of all x0−based loops in X is a semi-group with identity (a monoid?)

The collection of all equivalence classes of paths in a topological space X is called the
fundamental groupoid, denoted Γ(X).

The retracing identity

T = T [α · l · l−1]. (L.-2)

Here l is a curve with one end on α, and α · l · l−1 is the loop obtained by going around
α, along the curve and back along the curve α. And

lim
γ→0

T = 1, (L.-2)
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Figure L.1: Bridge.

(b)(a)

βα oα  β

Figure L.2: Definition of the composition of two loop α and β (both in Lx0
) - it is denoted

as α ◦ β.

where γ → 0 means γ shrinks to the loop to a point.

If we define multiplication of loops as the composition, the elements of Lx0
form a group

under under this multiplication. The identity is just the loop contracted to a point at x0.
The inverse of the loop α is the same loop with opposite orientation, which we denote as
α−1. Associativity α ◦ (β ◦ γ) = (α ◦ β) ◦ γ is demonstrated if fig().

i) The composition of parametrized curves is not associative, since the curves (c3 ◦ c2) ◦ c1
and c3 ◦ (c2 ◦ c1) are related by a reparametrization:

c3 ◦ (c2 ◦ c1) = c3 ◦
{

c2(2t), 0 ≤ t ≤ 1/2
c1(2t− 1), 1/2 ≤ t ≤ 1

=







c3(2t), 0 ≤ t ≤ 1/2
c2(4t− 2), 1/2 ≤ t ≤ 3/4
c1(4t− 3), 3/4 ≤ t ≤ 1

(L.-2)

(c3 ◦ c2) ◦ c1 =

{

c3(2t), 0 ≤ t ≤ 1/2
c2(2t− 1), 1/2 ≤ t ≤ 1

◦ c1 =







c3(4t), 0 ≤ t ≤ 1/4
c2(4t− 1), 1/4 ≤ t ≤ 1/2
c1(2t− 1), 1/2 ≤ t ≤ 1

(L.-2)

Definition The set of equivalence classes of curves is denoted by P. In order to dis-
tinguish the equivalence classes from their representative curves we will refer to them as
paths.
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Figure L.3: inverse α−1 is a bit of a misnomer, α ◦ α−1 6= o.

Note that the definition of curves and paths is somewhat opposite to the defintions given
in the appandix on the Hawking-Penrose singularity theorems.

The advantage of dealing with paths P rather than curves is that we now have almost a
group structure since composition becomes associative and the path pc ◦ p−1

c = b(pc) is
trivial (stays at the beginning point). However, we still do not have a natural identity
element in P and not all of its elements can be composed. The natural structure behind
this is that of a groupoid.

L.2.3 Loops of Connections

Given a loop α ∈ Lx0
, the holonomy of Aµ(x) around α is Hα(A) := exp(i

∮

α
Aµdx

µ).

Hα◦β(A) = (L.-2)

If two loops α and β have the same holonomy

Hα(A) = Hβ(A) (L.-2)

for every Aµ(x) then we say they belong to the same holonomy loop class or just hoop.
We denote such a class as α̃.

FA free algebra

N
∑

i=1

aiαi ∈ K if and only if
N
∑

i=1

aiHαi
(A) = 0 (L.-2)

The function Hαi
(A) is a homorphism. Forms an ideal
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Hαi
(A)

((

N
∑

i=1

biβi

)(

N
∑

i=1

aiαi

))

= Hαi
(A)

(

N
∑

i=1

biβi

)

× 0 = 0 ∈ (L.-2)

α and β have a common point. Here # indicates joining of two loop at an intersection.

T 0[γ] = Uγ(s) = Pe
H

γ
A. (L.-2)

{T 0[α], T 0[β]} = 0 (L.-2)

T a[α](α(s)) :=
1

2
[Uα(t, s)Ẽ

a(α(s))Uα(s, t)Ẽ
b(α(t)) (L.-2)

{T a[α], T 0[β]} =
1

2i

∫

dtδ3(γs, η(t))η̇(t)[T 0[γ#η] − [T 0[γ#η−1]]. (L.-2)

x0

(a) (b)

x0 x0

Figure L.4: (a) Two examples of strongly independent loops in Lx0
. (b) An example of

two strongly dependent loops in Lx0
- they have a segment in common.

(

T̂ 0[α]Ψ
)

[γ] ≡ Ψ[α ∪ γ] (L.-2)

∪ stands for union in the set of loops.

(T̂ a[α](s))[γ] ≡ ~c

∫

dtδ3(α(s), γ(t))γ̇a(t)[Ψ[γ ◦ α] − [γ ◦ α−1] (L.-2)

can be found in section ?? and in the maths glossary.

The collection of all equivalence classes of paths in a topological space X is called the
fundamental groupoid, denoted Γ(X).
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1. A finite set {e1, . . . , eN} of edges is said to be independent if the edges ei can only
intersect each other at their sources s(ei) or targets t(ei).

2. A finite graph is a collection of a finite set {e1, . . . , eN} of independent edges and
their vertices. We denote by E(γ) and V (γ) respectively as sets of independent edges and
vertices of a given finite graph γ. Nγ is the number of elements in E(γ).

Details: loop algebra

T a[γ](s) :=
√

2trUγ(s)
AB σ̃aAB(γ(s)) (L.-2)

i{T a[γ](s), T b[η](t)} = 2Uγ(s)
AB{σ̃aAB(γ(s)), Uη(t)

CD}σ̃bCD(η(t))

+ 2σ̃aAB(γ(s)){Uγ(s)AB , σ̃bCD(η(t))}Uη(t)CD (L.-2)

= Uγ(s)
AB − i

√
2

∫ t

duδ3(η(u), γ(s))η̇a(u)Uη(0, u)C(AUη(u, t) D
B) σ̃bCD(η(t))

+ i
√

2σ̃aAB(γ(s))

∫ s

duδ3(γ(u), η(t)γ̇b(u)Uγ(0, u)C(AUγ(u, s) D
B)

=
√

2∆a[γ, η]Uγ(s)
ABUη(0, u)C(AUη(u, t) D

B) σ̃bCD(η(t))

+
√

2∆b[η, γ]σ̃aAB(γ(s))Uγ(0, u)A(CUγ(t, u) B
D) Uη(t)

CD (L.-4)

√
2∆[γ, η]

[

Uγ(s)
ABUη(u, t) D

B σ̃bCD(η(t))Uη(t, u)CA

+ Uγ(s)
ABUη(u, t) D

A σ̃bCD(η(t))Uη(t, u)CB

]

(L.-4)

{T a[γ](s), T b[η](t)} = i∆b[η, γ](t) T a (L.-4)

Uγ(s)AB = −Uγ−1(s)BA (L.-4)

UA
B(0, u)UB

C(u, s) = UA
C(0, s) (L.-4)

∆a[γ, η](s) ≡ 1

2

∫

dt δ3(γ(s), η(t)) η̇a(t) (L.-4)

√
2{σ̃aAB(x), UCD

γ (0, s)} = −i

∫ s

0
duδ3(γ(u), x) γ̇a(u) Uγ(0, u)C(AUγ(u, s) D

B) (L.-4)
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L.2.4 Differentiability Classes of Manifolds and Loops

See Chapter 3

L.2.5 Loop Space

LΣ denotes the space of parametrize, differntiable, loops in Σ, which are the maps γ :
s → Σ. We also include in LΣ those loops that with nowhere vanishing tangent vector,
γ̇a(s).

there is a subset of Diff(Σ) which leaves the curve γ invariant, and only reparamertizes it.
The infinitesimal elements of this subset are the vector fields on Σ that are tangent to γ.
Globally, one may show that the subset is thw diffeomorphism group of the complement
of γ, that is, Σ − γ.

Exercise: Prove loop space is a differential manifold.

Proof:

L.2.6 Regularization of Holonomies

The Poison-brackets among the holonomies and the fluxes can be calculated by regular-
izing the edges and surfaces in three dimensions and then taking the limit of a family of
functions, theat converge exactly to the holonomy along the particular edge and the flux
through the particular surface.

Hα(A) = exp i

∫

R3

Xµ
γ (x)Aµ(x)d

3x (L.-4)

Xµ
γ (x) :=

∮

γ

dsδ3(~γ(s), ~x)γ̇µ (L.-4)

where s is a parametrization of the loop γ, s ∈ [0, 2π]. Xµ
γ (x) is called the form factor of

γ. Its Fourier transform is

Xµ
γ (k) :=

1

(2π)3/2

∫

dxXµ
γ (x)e−ik·x

=
1

(2π)3/2

∮

dsγ̇µe−i
~k·~γ(s) (L.-4)
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regularize by replacing the delta function δ3(~y− ~x) with fr(~y − ~x) that approximates the
delta function and such that limr→0 fr(~y − ~x) → δ3(~y − ~x)

Xµ
γ(r)(~x) :=

∫

R3

d3yfr(~y − ~x)Xµ
γ (~y) (L.-4)

L.2.7 Classical Loop Algebra

L.2.8 Holonomy-Flux ∗−Algebra

The elementary classical observables in our representaion theory are the complex valued
functions of holonomies A(e) along paths e in Σ, and fluxes Ei(S) of triad filed across
2-surfaces S, which are defined by

Ei(S) :=

∫

S

ηabcẼ
c
i . (L.-4)

lim
ǫ→0

∫

S

d2y fǫ(x
1, x2; y1, y2) g(y1, y2) = g(x1, x2) (L.-4)

[Ei]f(x) :=

∫

dya ∧ dyb fǫ(x, y)ηabcEc
i (y) (L.-4)

if the surface is given in local coordinates by x3 = const, as ǫ tends to zero [Ei]f tends to

E3
i (x).

T [α] :=
1

2
trP exp

[

G

∮

dtα̇bAb(α(t))

]

, (L.-3)

T a[α](α(s)) :=
1

2
trP

{

exp

[

G

∮

dtα̇bAb(α(t))

]

Ẽa(α(s))

}

(L.-2)

where Aa(x) = Aia(x)τi and Ea(x) = 4Eai(x)τi are the Ashtekar connection and its
conjugate frame field. (τi is the Paulli matrix divided by 2i)

Invariance under inversion of loop is expressed as

T [α]−1 = T [α−1]. (L.-2)

The spinor identity
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T [α]T [β] =
1

2

(

T [α#β] + T [α#β−1]
)

, (L.-2)

if α and β have a common point. Here # indicates joing of two loop at an intersection.

T 0[γ] = trUγ(s) = trPe
H

γ
A. (L.-2)

{T 0[α], T 0[β]} = 0 (L.-2)

T a[α](α(s)) :=
1

2
tr[Uα(t, s)Ẽ

a(α(s))Uα(s, t)Ẽ
b(α(t)) (L.-2)

{T a[α], T 0[β]} =
1

2i

∫

dtδ3(γs, η(t))η̇(t)[T 0[γ#η] − [T 0[γ#η−1]]. (L.-2)

L.2.9 Quantization of Loop Algebra

The holonomy (corresponding to the configuration variable) opertor acts by multiplication
as does (x in one particle quantum mechanics):

T̂ [α]ΨS(A) = −Tr

(

P
∫

α

A

)

ΨS(A) (L.-2)

[T̂ 0[α], T̂ 0[β]] = 0 (L.-2)

[T̂ 0[α], T̂ a[β](s)] (L.-2)

||Tγ|| := sup[A]∈A| Tγ[A] | (L.-2)

and complete HA with respect to this norm we obtain a commutative C∗−algebra HA.

first key result we will use is the

Gel’fand-Naimark theorem, that every C∗-algebra with identity is isomor-
phic to the C∗-algebra of all continuous bounded functions on a compact Haus-
dorff space called the spectrum of the algebra.
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Completetion w.r.t. this norm gives us a commutative C∗-algebra with identity, HA. We
will call the spectrum of HA by:

A/G (L.-2)

The algebra structure allows us to construction of its representaions on Hilbert spaces.
For every cyclic representation of HA there is a Borel measure µ on A/G using which we
get a Hilbert space:

Haux := L2(A/G, µ). (L.-2)

(Exercise) the operator equation

e−B̂ÂeB̂ = I + t{Â, B̂} +
t2

2!
{Â, {Â, B̂}} + · · · (L.-2)

L.3 Spinor Network States

The basic canonical degrees of freedom are holonomies of a distributional SU(2) con-
nection and fluxes of the densitized triad conjugate to this connection. The Gauss law
(local SU(2) invariance) and momentum (spatial diffeomorphism) constraints are realized
as self-adjoint operators constructed out of these variables. States annihilated by these
constraint operators span the kinematical Hilbert space. Particularly convenient bases for
this kinematical Hilbert space are the spin network bases. In any of these bases, a state
is described in terms of links l1, . . . , ln carrying spins (SU(2) irreducible representations)
j1, . . . , jn and vertices carrying invariant SU(2) tensors (intertwiners).

[ρje(He(A))]αβ , α, β = 1, . . . , dρje
(L.-2)

where dρje
= 2je + 1 is the dimension of the representation.

[ρj1(He1
(A))]α1

β1
· · · [ρjn(He1

(A))]αn

βn
vβ1...βn = vα1...αn (L.-2)

vα1...αn

i vi′α1...αn
= δii′ (L.-2)
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L.3.1 Spinor Network Decomposition of Kinematic Hilbert Space

Spinor Network Decomposition on Single edge

The decomposition of He = L2(SU(2), dµH) is provided by the Peter-Weyl theorem.

∫

Ae

ρj
′

α′β′ρ
j
αβ dµe =

1

2j + 1
δj

′jδα′αδβ′β (L.-2)

Spinor Network Decomposition on Finite Graph

L.4 Cylindrical Measure Theory

A key ingredient for discussing quantum physics is to have at hand an inner product
to compute expectation values. It is not easy to develop functional measures in infinite
dimensional spaces.

One wishes to compute: (ψ1, ψ2) =
∫

A/G
dµ([A])ψ1([A])ψ2([A])

To motivate the functional space we will consider let us start with a simpler example,
that of a scalar field φ satisfying the Klein-gordon equation.

A configuration space C for such a theory would be given by the set of all smooth field
configurations with appropriate fall off conditions at infinity, for instance C2 functions.
One therefore expects to have wavefunctions Ψ(φ), and wishes to compute,

(N1;N2) = N1(p)N2(p) (L.-2)

And we therefore need a suitable measure and integration theory. To construct this, let
us consider the set of test (or smearing) functions on R3, that is, functions that fall off
such that the integral,

Ff(φ) = 〈f, φ〉 =

∫

Rd

ddxf(x)φ(x). (L.-2)

The functions f are called “Schwarz space” and define the simplest linear functionals on
C.

A set of functions on C one can introduce are the “cylindrical” functions. Consider a
finite dimensional subspace of the Schwarz space Vn, with a basis (e1, . . . , en). We can
define the projections,
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For any function F : Rn → C

πe1,...,en
(φ) = {〈e1, φ〉 , . . . , 〈en, φ〉} (L.-2)

This represntation is not unique. In particular any function cylindrical with respect to
Vn is cylindrical with respect to any Vm that contains Vn.

A cylindrical measure that allows to integrate cylindrical functions. Any measure in Rn

would allow us to integrate cylindrical functions, but the tricky part is that there has to
be consistency of these measures for different choices of Vn’s.

∫

C

dµ(φ)f(φ) =

∫

Rn

F (η1, . . . , ηn)dµ〈e1,φ〉,...,〈en,φ〉
(L.-2)

Suppose one has Vn and Vm which have non-vanishing intersection, and with m > n, and,

V ∗n (η1, . . . , ηn) ⊂ Ṽ ∗m(η̃1, . . . , η̃n) with ei =

m
∑

j=1

Lij ẽj ; i = 1, . . . , n (L.-2)

Then for every cylindrical function f with respect to Vn defined by a function F on Rn

one can make it cylindrical with respect to Vm via,

f(φ) = F (〈e1, φ〉 , . . . , 〈en, φ〉) = F (
〈

L1j ẽj , φ
〉

, . . . ,
〈

Lnj ẽj, φ
〉

= F̃ (
〈

ẽj , φ
〉

, . . . ,
〈

ẽj , φ
〉

(L.-2)

And therefore one has to have that,

∫

Rn

F (η1, . . . , ηn)dµe1,...,en
(η1, . . . , ηn) =

∫

Rm

F̃ (η̃1, . . . , η̃m)dµẽ1,...,ẽm
(η̃1, . . . , η̃n) (L.-2)

Any set of measures one finite dimensional spaces satisfying these conditions for any
cylindrical function F, defines a cylindrical measure via,

∫

C

dµ(φ)f(φ) =

∫

Rn

F (η1, . . . , ηn)dµe1,...,en
(η1, . . . , ηn) (L.-2)

And conversely, a cylindrical measure defines consistent sets of measures in finite dimen-
sional settings.
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f(φ) = F (〈e1, φ〉 , . . . , 〈en, φ〉) (L.-2)

A particularly simple example of this construction is to consider the normalized Gaussian
measures in Rn. The resulting measure on C is the one used in textboks when quantizing
the scalar field. The Fock space is obtained by completion of the sets of cylindrical
measures with a certain weight.

However, in the Cauchy completion, we obtain states that which “genuinely” depend on
an infinite number of degrees of freedom. these states can not be realized as functions
on C. appropriate measures are Gaussians and all quantun states can be realized on the
space S ′ of tempered distributions, the topological dual of the space S of probes.

An obvious property of measures of integration involving a finite number of disjoint mea-
sure sets is that the measure of the union of the measure sets is equal to the sum of their
measures, i.e.

µ
(

∪Ni=1Ai
)

=
N
∑

i=1

µ(Ai), for N <∞, where Ai ∩ Aj = ∅ for all i 6= j. (L.-2)

However, this is not in general true for countable unions.

More precise account:

The possibility of extending a measure µ on F to a σ−additive measure µ̃ on B(F) is in
particular relevant to physical applications in quantum mechanics. Recall that quantum
mechanical systems are often defined by first giving a linear pre-Hilbert space and then
completing this space with respect to an inner product. In general, if µ is cylindrical but
not σ−additive, the space H of -square integrable cylindrical functions on X (denoted
through CL2(X,F , µ)) is only a pre-Hilbert space. Such spaces will be discussed in section
??. However, if µ is extendible to a σ−additive measure µ̃ on (X,B(F)) then the Cauchy
completion of H leads to the space H̃ = L2(X,B(F), µ̃) (see section 5).

On the other hand if µ is not extendible then the Cauchy completion of CL2(X,F , µ)
leads in general to a space with state-vectors which cannot be expressed as functions on
the initial space X. This is the case in scalar field theory if one considers X = S(R3) (the
Schwarz space of rapidly decreasing smooth C∞ functions on R3) and µ is a cylindrical
measure defined with the help of a positive definite function on S(R3), continuous in the
nuclear space topology (see []).

−−−−−−−−−−−−−−−−−−

As we shall see in Sect. 5 this is also the case in Yang-Mills theory if we take H =
CL2(A/G,F = C, µ̂AL), where µ̂AL is the Ashtekar-Lewandowski measure on A/G. In the
scalar field case the Cauchy completion of CL2(S(R3),F , µ) gives the space of square inte-
grable functions on S ′(R3) (the space of tempered distributions), while in the Yang-Mills
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case the completion of CL2(A/G, C, µ̂AL) gives the space L2(A/G,B(C), µAL) of square

integrable functions on the Ashtekar-Isham space A/G of generalized distributional con-
nections modulo gauge transformations.

L.4.1 Probability Densities

C(λ) ≡ < 0|eiλQ|0 > = e−
1
2
λ2

=

∫

ρ(x)eiλxdx.

Inverting the Fourier transform one finds a Gaussian ground state ensity

ρ(x) =
1√
2π
e−

1
2
x2

. (L.-2)

∫Rn

e−
1
2
(x,Ax)+(b,x)dnx =

∏

k

√

(2π)n

det(A)
e

1
2
(b,A−1b). (L.-2)

The “characteristic function”

C(λ) ≡
√

det(A)

(2π)n

∫Rn

e−
1
2
(x,Ax)+i(λ,x)dnx = e−

1
2
(λ,A−1λ). (L.-2)

It is the Fourier transform of a probability measure

dµ(x) = ρ(x)dx, (L.-2)

we determined the probability density

ρ(x) =

√

det(A)

(2π)n
e−

1
2
(x,Ax)

by doing an inverse Fourier transform on C.

How do we know whether a given function C is the Fourier transform of a probability
measure?

The function

C(λ) ≡
∫Rn

ρ(x)e(λ,x)dnx (L.-2)
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has the properties

(i) C is normalized

C(0) =

∫Rn

ρ(x)dnx = 1 (L.-2)

(ii) C is continuous at zero, since

C(λ) − 1 =

∫Rn

(

ei(λ,x) − 1
)

ρ(x)dnx

=

∫Rn

(cos((λ, x)) − 1)ρ(x)dnx+ i

∫Rn

(sin((λ, x))ρ(x)dnx (L.-2)

the principle of dominated convergence permits us to take the limit λ → 0 inside the
integrals.

(iii) For any complex a1, . . . , an, and real λ1, . . . , λn

∫Rn

∣

∣

∣

∣

∣

∑

l

ale
i(λl,x)

∣

∣

∣

∣

∣

2

ρ(x)dnx =
∑

k,l

a∗kalC(λk − λl) ≥ 0 (L.-2)

as a consequence of the positivity of ρ (positive definiteness of C).

Infinite dimensions

problems come from trying to extend

ρ(x)dnx =

√

1

(2π)n
e

1
2
(x,x)dnx (L.-2)

to n = ∞. d∞ doesn’t make sense, (x, x) =
∑∞

1 x2
n would require this infinite sum to be

convergent. The factor goes to zero as n→ ∞. However,

lim
n→∞

(

Ω, ei(λ,Q)Ω
)

=
(

Ω, eiϕ(f)Ω
)

=
(

Ω, ei
P

λnϕenΩ
)

= e−
1
2

P∞
k=1 λ

2
k = e−

1
2

R

f2(x)dx (L.-2)

could be well defined. In particular we note that for
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C(f) =
(

Ω, eiϕ(f)Ω
)

(i)

C(0) = 1

(ii) C is continuous in the test functions f .

(iii) For any complex a1, . . . , an and real test functions f1, ṡ, fn

∑

k,l

a∗kalC(fk − fl) ≥ 0. (L.-2)

As we will come to later, we have the following generalization of Bochner’s theorerm

(Bochner-Minlos) Any normalized continuous positive defininte complex function on test
function space S(Rn) is the Fourier transform of a probability measure µ on distribution
space S(Rn).
now we have

C(f) =
(

Ω, eiϕ(f)Ω
)

=

∫

S∗
ei<ω,f>dµ(ω) (L.-2)

where < ω, f > is the application of the generalized function ω ∈ S∗ to the test function
f .

recall the expansion of test functions in terms of a basis, where

f(x) =
∑

λnen(x).

only admit rapidly decreasing sequences of coefficients (λn). we have

f ∈ L2(R) ↔
∑

λ2
n <∞

whereas

f ∈ S(R) ↔
∑

nkλ2
n <∞ for all k.

ω(x) =
∑

ωnen(x).
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the coeficients ωn are not square summable.

< ω, f > =
∑

ωnλn =

∫

f(x)ω(x)dx.

The ω(x) on the right may fail to exist pointwise, but the sum is well defined and finite.

L.4.2 Bochner-Minlos Theorems

This is “algebraic” part of the problem.

we consider projective limits of infinite families of finite dimensional and measurable
spaces.

The appropriate space of histories turns out to be the space S ′ of (tempered) distributions
on the Euclidean space-time and regular measures dµ on this space are in one to one
correspondence with the socalled generating functionals, which are functionals on the
Schwarz space S of test functions satisfying certain rather simple conditions. (Recall that
the tempered distributions are continuous linear maps from the Schwarz space to complex
numbers.)

In the characterization of typical configurations of measures on functional spaces the so
called Bochner-Minlos theorems play a very important role. These theorems are infinite
dimensional generalizations of the Bochner theorem for probability measures on RN .
Let us, for the convenience of the reader, recall the latter result. Consider any (Borel)
probability measure on RN , i.e. a finite measure µ, normalized so that µ(RN ) = 1. The
generating functional χµ of this measure is its Fourier transform, given by the following

function on RN(RN )′, the prime denotes the topological dual, see below)

χµ(λ) =

∫

RN

Ndµ(x)ei(λ,x), (L.-2)

where (λ, x) =
∑N

j=1 λ
jxj . Generating functionals of measures satisfy the following three

basic conditions,

(i) Normalization: χ(0) = 1;

(ii) Continuity: is continuous on RN ;

(iii) Positivity:
∑m

k,l=1 ckcl(λk−λl) ≥ 0, for allm ∈ N, c1, . . . , cm ∈ C and λ1, . . . , λm ∈ RN
.

The last condition comes from the fact that ‖f‖µ ≥ 0, for f(x) =
∑m

k cke
i(λ,x), where

‖ · ‖µ denotes the L2(RN , dµ) norm. The finite dimensional Bochner theorem states that
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the converse is also true. Namely, for any function χ on RN satisfying (i), (ii) and (iii)
there exists a unique probability measure on RN such that χ is its generating functional.

χ(λ) =

∫

S′

eλ·xdµ(λ) (L.-2)

(i) χ(0) = 1
(ii) χ is continuous in every finite dimensional subspace of S
(iii) For every e1, . . . , eN ∈ S and c1, . . . , cN ∈ C we have

N
∑

i,j=1

c̄icjχ(−ei + ej) ≥ 0. (L.-2)

χ(−e) = χ(e) (L.-1)

|χ(e)| ≤ χ(0) (L.0)

i.e. χ(e) is bounded

Proof: take N = 2, c1 = 1 and c2 = z

2
∑

i,j=1

c̄icjχ(−ei + ej) = χ(0) + χ(e1 − e2)z + χ(e2 − e1)z + χ(0)|z|2

= χ(0)(1 + |z|2) + χ(e)z + χ(−e)z (L.0)

where e = e1−e2. Set z = 1, then we have 2χ(0)+χ(e)+χ(−e) ≥ 0 so that χ(e)+χ(−e)
is real and for z = i we have −iχ(e) + iχ(−e) ≥ 0 so that −i(χ(e) − χ(−e)) is real. As
such we have:

χ(e) + χ(−e) = χ(e) + χ(−e)
χ(e) − χ(−e) = χ(−e) − χ(e) (L.0)

=⇒ χ(e) = χ(−e). Now choose z such that:

zχ(e) + |χ(e)| = 0 (L.0)

So that zχ(e) + |χ(e)| = 0. Substituting this into (L.0)
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χ(0)(1 +

∣

∣

∣

∣

|χ(e)|
χ(e)

∣

∣

∣

∣

2

) + 2|χ(e)| ≥ 0,

so that we have

2χ(0) − 2|χ(e)| ≥ 0 (L.0)

Putting z = 0 in (L.0) we find

χ(0) ≥ 0 (L.0)

∣

∣

∣

∣

χ(0) χ(e)
χ(−e) χ(0)

∣

∣

∣

∣

≥ 0 (L.0)

because

χ(0)|c1|2 + χ(e)c1c2 + χ(−e)c1c2 + χ(0)|c2|2 ≥ 0,

by the assumption of (L.4.2). This can be rexpressed as

(c1, c2)

(

χ(0) χ(e)
χ(−e) χ(0)

)(

c1
c2

)

≥ 0, (L.0)

As the matrix is hermitian, there exists eigenvectors c̃1

(

χ(0) χ(e)
χ(−e) χ(0)

)(

c1
c2

)

= λ

(

c1
c2

)

(L.0)

λi (|c̃1|2 + |c̃2|2) ≥ 0 i = 1, 2 (L.0)

Hence both eigenvalues are real non-negative numbers

λ1, λ2 ≥ 0 (L.0)

and so the determinte satisfies

∣

∣

∣

∣

χ(0) χ(e)
χ(−e) χ(0)

∣

∣

∣

∣

= λ1λ2 ≥ 0. (L.0)
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Conversley???

Every positive-definite continuous function defines a generalized function on S.

Mjk = χ(xk − xj) (L.0)

The conditions for a matrix to be positive-definiteness is that it be Hermitian M∗
jk = Mkj

and its eigenvalues to be non-negative. The condition for arbitary xk and xj

f(xk − xj) = f(xj − xk)
∗ setting x = xk − xj =⇒ f(−x) = f(x), (L.0)

(f, ϕ) =

∫

f(x)ϕdx (L.0)

on S

∣

∣

∣

∣

f(0) f(x)
f(x) f(0)

∣

∣

∣

∣

≤ 0, (L.0)

|f(x)| ≤ f(0), (L.0)

i.e., f(x) is bounded.

this generalized function is positive-definite:

∫

f(x− y)ϕ(y)ϕ(x)dxdy. (L.0)

∫ T

−T

∫ T

−T

f(x− y)ϕ(y)ϕ(x)dxdy (L.0)

ϕ(x) is summable (
∫

ϕ(x)dx <∞ ?) and f(x) is bounded ??? For each T the integral ()
is the limit of sums

m
∑

j,k=1

f(xk − yj)ϕ(xk)ϕ(xj)∆xk∆xj (L.0)

the generalized function (f, ϕ) is positive-definite
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Every continuous postive-definite function χ(φ) is the Fourier transform of a finite positive
measure dµ.

(f, ϕ) = (2π)−n
∫

ϕ̃(λ)dµ(λ) (L.0)

is dµ(λ) <∞ ϕm(x) = αm ⋆ α
∗
m(x), where {αm(x)} is a δ−sequence in S. we obtain

(f, ϕm) = (2π)−n
∫

ϕ̃m(λ)dµ(λ) (L.0)

ϕ̃m(λ) = |α̃m(λ)|2 (L.0)





1 χ(t− s) χ(t)

χ(t− s) 1 χ(s)

χ(t) χ(s) 1



 (L.0)

which is {φ(ti − tj)} with t1 = t, t2 = s and t3 = 0. In particular the determinant has to
be non-negative.

0 ≤ 1 + χ(s)χ(t− s)χ(t) + χ(s)χ(t− s)χ(t) − |χ(s)|2
−|χ(t)|2 − |χ(t− s)|2

= 1 − |χ(s) − χ(t)|2 − |χ(t− s)|2 − χ(t)χ(s)(1 − χ(t− s))

−χ(t)χ(s)(1 − χ(t− s))

≤ 1 − |χ(s) − χ(t)|2 − |χ(t− s)|2 + 2|1 − χ(t− s)| (L.-3)

or

|χ(s) − χ(t)|2 ≤ 1 − |χ(s) − χ(t)|2 + 2|1 − χ(t− s)|
≤ 4|1 − χ(t− s)| (L.-3)

L.4.3 Proof of Bochner’s Theorem

We use the dominated convergence theorem

lim
n→∞

∫

fn(t)dµ =

∫

lim
n→∞

fn(t)dµ,
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to prove

f(x) = lim
T→∞

1

2π

∫ T

−T

(1 − |t|
T

)e−itxφ(t)dt,

= lim
T→∞

1

2π

∫ T

0

∫ T

0

e−i(t−s)xφ(t− s)dtds (L.-3)

a change of variables to show the second line

of χ to show the last

f(x) = lim
T→∞

1

2π

∫ T

0

∫ T

0

e−itxeisxφ(t− s)dtds (L.-3)

and finally a Riemann sum approximation to the integral and the positive definitness of
φ to show that (L.4.3) is non-negative,

f(x) = lim
T→∞

1

2π

∫ T

0

∫ T

0

e−itxeisxφ(t− s)dtds

= lim
A→0

A2

4n

2n
∑

j=1

2n
∑

k=1

φ
(A(j − k)

2n
)

e
(aj
2n
)

e
(ak
2n
)∗

≥ 0. (L.-4)

L.4.4 Generalization to Infinite Dimensional Spaces: Bochner-
Minlos Theorem

λ(i) := λi is replaced by f(x).

Then the simplest generalization of the Bochner theorem states that a function on S(Rd+1)
satisfies the following conditions,

(i′) Normalisation: χ(0) = 1
(ii′) Continuity: χ is continuous in every finite dimensional subspace of S(Rd+1)
(iii′) Positivity:

∑m
k,l=1 ckclχ(fk−fl) ≥ 0, for all m ∈ N, c1, . . . , cm ∈ C and f1, . . . , fm ∈

S(Rd+1),

if and only of the Fourier transform of a probability measure µ on S(Rd+1), i.e.

χ(f) =

∫

S(Rd+1)

dµ(φ)eiφ(f). (L.-4)
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L.4.5 Background Independent Quantization of Linear Scalar
Field Theory

[78]

L =
1

2
φ(x)∇a∇aφ(x) +

m

2
φ2(x) (L.-4)

The background independent quantization of the real scalar field - polymer representation
of the scalar field [?] The classical configuration space, Q, consists of all real-valued smooth
functions φ on Σ. Instead of loops, given a set of finite number of points X = {x1, . . . , xN}
in Σ, denote ClyX the vector space generated by finite linear combinations of the following
functions of φ:

ΠX,λ(φ) :=
∏

xj∈X

exp[iλjφ(xj)],

where λ = (λ1, . . . , λN) are arbitrary real numbers, which play a role of labelling of loops.
It is obvious that Cly of all cylindrical functions on Q is defined by

Cyl := ∪XClyX , (L.-4)

(compare to (N.-19)). Completing Cyl with respect to the sup norm

‖ΠX‖ := sup
φ∈Q

|ΠX,λ(φ)|, (L.-4)

(compare to (L.2.9)) one obtains an Abliean C∗−algebra with unit Cyl. Thus one can
use the GNS structure to construct its cyclic representations. A preferred positive linear
functional ω0 on Cyl is defined by

ω0(ΠX,λ) =

{

1 if λj = 0 for all j

0 otherwise,
(L.-4)

which defines a diffeomorphism invariant faithful Borel measure on Q as

∫

Q

dµ(ΠX,λ) =

{

1 if λj = 0 for all j

0 otherwise,
(L.-4)

Thus one obtains the Hilbert space, HKG
Kin ≡ L2(Q, dµ), of square integrable functions on

a compact topological space Q with respect to µ, where Cly acts by multiplication. The
quantum configuration space Q is the Gel’fand spectrum of Cyl.
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Some Loop Quantum Cosmology maths

for a single point set X ≡ {x0}, Cylx0
is the space of all almost periodic functions on the

real line R. The Gel’fand spectrum of the corresponding C∗−algebra Cylx0
is the Bohr

completion Rx0
of R (see section N.-19), which is a compact topological space topological

space such that Cylx0
is the C∗−algebra of all continuous functions on Rx0

. Since R is

densely embedded in in Rx0
, Rx0

can be regarded as a completion of R.

Given a pair (x0, λ0), there is an elementary configuration for the scalar field, the so-called
point holonomy,

U(x0, λ0) := exp[iλ0φ(x0)]. (L.-4)

It corresponds to a configuration operator Û(x0, λ0), which acts on any cylindrical function
ψ(φ) ∈ HKG

Kin by

Û(x0, λ0)ψ(φ) = U(x0, λ0)ψ(φ). (L.-4)

All these operators are unitary. But since the family of operators Û(x0, λ0) fails to be

weakly continuous in λ, there is no operator φ̂(x) on HKG
Kin (in LQC this means the Stone-

von Neumann theorem and so this quantization is not unitary equivalent to the usual
Schrodinger representation). The momentum functional smeared on 3-dimensional region
R ⊂ Σ is expressed by

π(R) :=

∫

R

d3x π̃(x). (L.-4)

The Poisson bracket between the momentum functional and a point holonomy can be
easily calculated to be

{π(R), U(x, λ)} = −iλ χR(x)U(x, λ), (L.-4)

where χR(x) is the characteristic function for the region R. Recall from ordinary quantum
mechanics: p̂ψ(q) := i~{p, ψ(q)} = −i~dψ(q)/dq. So the momentum operator is defined
by the action on scalar network functions Πc=(X,λ) as

π̂(R)Πc(φ) := i~{π(R),Πc(φ)} = ~[
∑

xj∈X

λj χR(xj)]Πc(φ). (L.-4)

so-called scalar network functions Πc(φ) that are a orthonormal basis in HKG
Kin, where c

denotes (X(c), λ) and λ = (λ1, . . . , λN) are non-zero real numbers.
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Tychonov Theorem

Then the direct product space X∞ =
∏

l∈LXl is a compact topological space in the Tychonov
topology.

The Homotopy Group

We consider the set of paths with the same start and end points. Two such paths γ1 and
γ2 are homotopic if one path may be continuously deformed into the other while holding
the end points fixed. γ1 ∼ γ2.

We introduce the group multiplication operator: we define the product of two such paths
α · β as a path that goes along α, then along β. That is, if γ = α · β, then

γ(t) = α(2t) 0 ≤ t ≤ 1/2

β(2t− 1) 1/2 ≤ t ≤ 1. (L.-4)

Notice that this product is compatible with the equivalence relation just defined. If α1

and α2 are homotopic, α1 ∼ α2 and β1 ∼ β2 are homotopic, and if α1(1) = α2(1) =
β1(0) = β2(0), then α1 · β1 is homotopic to α2 · β2

The inverse of α is d efined α−1(t) = α(1 − t)

i) Ā(γ−1) = (Ā(γ))−1 (L.-3)

ii) Ā(γ2 · γ1) = Ā(γ2) · Ā(γ1) (L.-2)

i) Ā(γ−1) = (Ā(γ))−1 ii) Ā(γ2 · γ1) = Ā(γ2) · Ā(γ1) (L.-2)

∫

dµ0[A]ΨΓ,f(A) :=

∫

SU(2)n

dg1 . . . dgnf(g1, . . . , gn) (L.-2)

connections that cannot be expressed as continuous fields on M but which all the same
asign well defined holonomies on M. It is called the quantum configuration space.

projective limit of the projective family of Hilbert space HΓ

Unfortunately the projective family itself does not have a largest element from which one
can project to any other. However, such an element can in fact be obtained by a standard
procedure called the “projective limit”.
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The situation is strikingly similar to ordinary quantum mechanics, where the Hilbert space
of physical states is obtained by suitable completions of square integrable functions on the
configuration space. In many ways, Cly is analogous to the space C∞0 (R) of smooth fucn-
tions of compact support on R3 which is dense in the Hilbert space of quantum mechanics.
In field theory the situation is more involved. Not every physical state is a function on
just the configuration space, but distributions on the time=constant hypersurface are also
generically involved.

The quotient A/G := A/G is the gauge invariant quantum configuration space.

cylindrical
functions

completion
factorize

factorize

selects 

3. 

completion

limit

1. faithful
2. invariant underDiff

B.H. entropy

surface degrees 
of freedom

natural measure on 
4. ‘reality’ conditions

completion

states

dense in 

well defined
s.t. for

Cauchy
completion
with

spinor network
tempered

g

Ashtekar

measure
Lewandowski

projective
classical

config space

push
forward

config space
quantum

distributions

µ0

µ0

µ0

µ̃0

µ̃0

µ̃0H0 = L2(A, dµ0)

H̃0 = L2(A/G, dµ̃0)

H̃0H̃0

SU(2)

[SU(2)]N

µ0
γ

H0
γ = L2(A/Gγ, dµ0

γ)

∪γClyγ

Clyγ

Ā(γ−1)=(Ā(γ))−1

Ā(γ2·γ1)=Ā(γ2)·Ā(γ1)

A ∈ A

A ∈ A

A

A

G

A/G

A/G

A

A
G

A/G := A/G

for A ∈ A
∫

[DA]F (A) = 0

He(A(e)) ∈ SU(2)

e

U−1
γ (A(x1)) ∈ G

Uγ(A(x2)) ∈ G
(Σ)

Ψγ(A) = ψ(A(e1), . . . , A(eN))

∫

dµ̃0ΨαΨβ = δαβ

Figure L.5: Induce a measure on the projective limit. With the typical measures encoun-
tered in quantum field theory the set of smooth functions on the classical cofiguration
space has measure zero. Tempered distributions not just needed but essential. Connec-
tions that cannot be expressed as continuous fields on M but which all the same asign
well defined holonomies on M. The quotient A/G := A/G is the gauge invariant quantum
configuration space.

Classical configuration space A class of smooth functions of connections A(x), such that
they separate points in configuration space. When we say they separte points in configura-
tion space, what we mean is that given the values of enough functions F1[A(x)], . . . FN [A(x)]
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we can determine uniquely A(x) (??up to gauge transformations??).

Since A/G is compact, it admits regular (Borel, normalized) measures and can construct
Hilbert space of L2−functions.

It turns out that A admits a measure µ0 that is preferred both mathematically and
physically

as Aγ is isomorphic to [SU(2)]n, the Haar measure on SU(2) induces a measure µ0
γ on it

As we vary γ, we obtain a family of measures which turn out to be compatible and
therefore induce a measure on the projective limit A.

This measure has the nice properties (mathematically)

1. it is faithful; i.e., for any continuous, non-negative function f on A,
∫

dµ0f ≥ 0,
equality holding if and only if f is identically zero.

2. it is invariant under the (induced) action of Diff[Σ], the diffeomorphism group of Σ

3. µ0 induces a natural measure µ̃0 on A/G: µ̃0 simply the push-forward of µ0 under the
projection map that sends A to A/G.

(physically)

4. the classical phase space admits an (over)complete et of naturally defined configuration
and momentum variables which are real, and the requirement that that the corresponding
operators on the quantum Hilbert space be self-adjoint selects for us the measure µ̃0 [].

??the inner product was obtained on this set of states by requiring that the classical
reality conditions be implemented as adjointness conditions on the corresponding quantum
operators.??

L.5 The Space of Distributional Connections for Dif-

feomorphism Invariant Qunatum Gauge Theo-

ries

L.5.1 Introduction

This technical section involves category theory, covered in appendix X, and much of the
maths on toplogy and measure theory needed is covered in appendix O.
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Projective Limit

Ωj is a topological Hausdorff space for every j ∈ J ;

a directed set

J is a directed set of indexes, i.e. it is endowed with a partial order relationship � such
that

if i � k j � k then πij ◦ πjk
if i � j then the maps for all ij ∈ J there are are continuous surjective projections such
that:

1. πjj = idΩj
for all j ∈ J

2. if i � j � k then πij ◦ πjk = πik (consistency relation ).

γ1

γ2

γ

Figure L.6: direct set. The graphs γ1 � γ2 if γ1 ⊂ γ2. Any two graphs γ1 and γ2 and
there exists a graph γ such that γ1, γ2 ⊂ γ.

In the projective family there is, in general, no set χ which can be regarded as the largest,
from which we can project to any of the χS. Such a set emerges in an appropriate limit:
The projective limit of Ωj , πij , J is the subset of the cartesian product

∏

j∈J

Ωj (L.-2)

given by all its wires, this space is indicated by

Ω
←

lim Ωj . (L.-2)

The maps
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πj : Ω → Ωj

{ωi}j∈J 7→ πj({ωi}j∈J) := ωj (L.-2)

are called the projections of Ωj .

The projective limit Ω carries a natural topology,called initial topology , which is the
smallest topology w.r.t.the projections j of are continuous.

A base of this topology is given by the sets
∏

j∈J Uj ,where Uj ∈ Ωj is an open set such
that U j =j

L.5.2 The Label Set: Piecewise Analytic Paths

A groupoid is closed under binar operation, however, associativity, existence of identity,
and inverse of each element is not required.

A groupoid is a special case of what is know as a category which is a general concept
designed to encompass structures common in mathematics. The formal definintion of a
category is the following:

Definition A category consists of a collection of objects A,B, . . . and maps between
these objects. No restriction is placed on the objects, but the maps are required to satisfy
the following conditions:

i) For any object A there is a map 1A : A → A, so that if B
f→ A and A

g→ C are maps
in the category, the composite maps satisfy

g · 1A = g and 1A · f = f.

ii) If A
f→ B, B

g→ C and C
h→ D are maps in the category, we have associativity

(h · g) · f = h · (g · f).

One can define a map from one category to another as a pair of functions which takes
objects to objects and maps to maps. Such a map F : C1 → C2 from category C1 to
category C2 should satisfy

F (1A) = 1F (A)

F (g · f) = F (g) · F (f). (L.-2)
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Such a map from one category to another is called a functor.

Definition A morphism f ∈ hom(x, y) is called an isomorphism provided there exists
g ∈ hom(y, x) such that

f ◦ g = idy

and

g ◦ f = idx

where idx means the identity map from x to itself and ditto for idy.

In other words, the maps f and g are inverses of one another. This leads to the categorical
definition

Definition A category in which every morphism is an isomorphism is a groupoid.

Definition A subcategory is a category which contains a subclass of the class of objects
and for each pair of objects (x, y) of the subcategory we have for the set of morphisms
hom′(x, y) ⊂ hom(x, y).

The definition of a category obviously applies to our situation with the following identi-
fications:

Category: σ
Objects: points x ∈ σ.
Morphisms: paths between points hom(x, y) := {p ∈ P; b(p) = x, f(p) = y}. Obviuously,
every morphism is an isomorphism.
Collection of sets of morphisms: all paths M(σ) = P.
Composition: composition of paths pc1 ◦ pc2 = pc1◦c2
Identities: idx = p ◦ p−1 for any p ∈ P with b(p) = x.

L.5.3 The Topology: Tychonov Topology

For an element of A ∈ A its holonomy dependes only on pc. To express this we use the
notation

A(pc) := hc(A) (L.-2)
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We know that

A(p ◦ p′) = A(p)A(p′), A(p−1) = A(p)−1, (L.-2)

that is, every A ∈ Ap defines a groupoid morphism

(Or each A defines a functor between categories!)

Definition Hom(P, G) is the set of all groupoid morphisms from the set of paths in σ
into the gauge group.

The setHom(P, G) is larger than the classical space A as there are elements ofHom(P, G)
that do not correspond to any smooth connection. We wish to equip Hom(P, G) with a
topology, as measure theory becomes most powerful in the context of topology.

Definition The projective limit X of a projective family (Xl, pll′)l,l′L is the subset of the
Cartesian product ×l∈LXl that satisfies certain consistency conditions:

X := {(xl)l∈L ∈ ×l∈LXl : l′ � l ⇒ pll′xl′ = xl}. (L.-2)

The point of this definition is that in our application to gauge theory, this is the limit
that gives us the continuum theory.

Definition Given a graph γ we denote by l(γ) the subgroupoid generated by γ with
V (γ) as the set of objects and with the e ∈ E(γ) together with their inverses and finite
compositions as the set of homomorphisms.

The labels ω, 0 in Γω0 stand for “analytic” and “of compact support” respectively.

Definition The tame subgroupoids l(γ) of P are those determined by graphs γ ∈ Γω0 .

Theorem L.5.1 Let L be the set of all tame subgroupoids l(γ) of P. Then the relation
l ≺ l′ if and only if l is a subgroupoid of l′ equips L with the structure of a partially ordered
and directed set.

Proof: Since l is a subgroupoid of l′ if and only if all objects of l are objects of l′ and
all morphisms of l are morphisms of l′ it is clear that ≺ defines a partial order. To
see that L is a directed consider any two graphs γ, γ′ ∈ Γω0 and consider γ′′ := γ ∪ γ′.
We must show that γ′′ itself is an element of Γω0 , that is, it has a finite number of edges.
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γ = γ′ =

γ′′ = γ ∪ γ′ =

e
e′

Figure L.7: The union of the two graphs γ and γ′ has a finite number of edges. If the
edge e were allowed to “oscillate” arbitarily rapidly the union of the two graphs would
have an inifinte number of edges.

Although this seems intuiatively obvious, see fig. (Q.7), this is not so for paths of arbitrary
differentiabilty; smooth curves can intersect in Cantor sets and thus define graphs which
have an infinte number of edges. We prove, however, that it is not the case for peicewise
analytic paths.

To prove this it is sufficient to show that any two edges e, e′ ∈ P can only have a finite
number of isolated intersections or e∩e′ has a common finite segment. To prove this sup-
pose then that e∩e′ is an infinite discrete set of points. We may choose parameterizations
of their representatives c, c′ such that each of its component functions

f(t)a := e′(t)a − e(t)a

vanishes in at least a countably infinite number of points tm, m = 1, 2, . . . . We show that
for any function f(t) which is real analytic in [0, 1] implies f = 0. Since [0, 1] is compact
there is an accumulation point t0 ∈ [0, 1] of the tm (here the compact support of the c ∈ C
comes into play) and we assume that tm converges to t0. Since f is analytic we can write
the absolutely convergent Taylor series

f(t) =
∞
∑

n=0

fn(t− t0)
n

(here the analyticity comes into play). We show that fn = 0 by induction over n =
0, 1, . . . . First we establish that f0 = 0,

f0 = f(t0) = lim
m→∞

f(tm) = lim
m→∞

0 = 0.
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Now suppose f1 = · · · = fn = 0, we show that fn+1 = 0. Under this assumption we have

f(t) = fn+1(t− t0)
n+1 + rn+1(t)(t− t0)

n+2

where rn+1(t) is uniformally bounded in [0, 1], that is, there exists a number K such that
|rn+1(t)| ≤ K for all x ∈ [0, 1]. Thus

0 = f(tm)/(tm − t0)
n+1 = fn+1 + rn+1(tm)(tm − t0)

for all m, hence

fn+1 = lim
m→∞

[fn+1 + rn+1(tm)(tm − t0)] = 0.

Now that we have a partially ordered and directed index set L we must specify a projective
family.

Definition For any l ∈ L define Xl := Hom(l, G) the set of all homomorphisms from
the subgroupoid l to G.

Definition For l ≺ l′ define a projection by

pl′l : Xl′ → Xl; xl′ 7→ (xl′)l (L.-2)

restriction of the homomorphism xl′ defined on the groupoid l′ to its subgroupid l ≺ l′.

Lemma L.5.2 The projections pl′l, l ≺ l′ are surjective, moreover, they are continuous.

Proof:

The direct product X∞ is compact by Tychonov’s theorem. From section J.10.6 we have
that the projective limit X is also a compact Hausdorff space in the subspace topology.

Let us collect these results in the following theorem.

Theorem L.5.3 The projective limit X of the spaces Xl = Hom(l, G), l ∈ L where L
denotes the set of all tame subgroupoids of P is a compact Hausdorff space in the induced
Tychonov topology whenever G is a compact Hausdorff space.
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Theorem L.5.4 The map

Φ : Hom(P, G) → X; H 7→ (Hl)l∈L

is a bijection.

Proof:

L.6 The C∗ Algebraic Viewpoint

A basic result in the Gel’fand-Naimark representation theory assures us that every Abelian
C∗−algebra C with identity is realized as the C∗−algebra of continuous functions on a
compact Hausdorff space, called the spectrum of C.

the spaces can be seen as the Gel’fand spectra of certain C∗−algebras, as such, we make
contact with so-called cylindrical functions on these spaces explicit which helps to con-
struct measures on them.

Suppose that we are given a partially ordered and directed index set L which label compact
Hausdorff spaces Xl and that we have surjective and continuous projections pl′l : Xl′ → Xl

for l ≺ l′ satisfying the consistency condition pl′l ◦pl′′l′ = pl′′l for l ≺ l′ ≺ l′′. Let X∞, X be
the corresponding direct product and projective limit respectively with Tychonov topology
with respect to which we know that they are Hausdorff and compact from the previous
sections.

Definition Let C(Xl) be the continuous, complex valued functions on Xl and consider
their union

Cyl′(X) := ∪l∈LC(Xl). (L.-2)

Let us define the following equivalence relation. Given fl1 ∈ C(Xl1
) and fl2 ∈ C(Xl2

) we
will say fl1 and fl2 are equivalent, denoted fl1 ∼ fl2 if

p∗l3l1f1 = p∗l3l2f2 (L.-2)

for all l1, l2 ≺ l3, where p∗l3l1 denotes the pull-back map from the space of functions on
Xl1

to the space of functions on Xl3
.
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The space of cylindrical functions on the projective limit X is defined to be the space of
equivalence classes

Cyl(X) := Cyl′(X)/ ∼ (L.-2)

We will denote the equivalence class of f ∈ Cyl′(X) by [f ]∼. The quotient just gets rid of
a redundancy: pull-backs of functions from a smaller set to a larger set are now identified
with the functions on the smaller set.

Note to check condition (L.6) it is sufficient to find just one single l3. For suppose that
fl1 ∈ C(Xl1

), fl2 ∈ C(Xl2
) are given and that we find some l1, l2 ≺ l3 such that p∗l3l1f1 =

p∗l3l2f2. Now let any l1, l2 ≺ l4 be given. Since L is a directed set we find l5 such that
l1, l2, l3, l4 ≺ l5 and due to the consistency condition among projections we have

i) pl4l1 ◦ pl5l4 = pl5l1 = pl3l1 ◦ pl5l3
ii) pl4l2 ◦ pl5l4 = pl5l2 = pl3l2 ◦ pl5l3 (L.-2)

from which follows

i) p∗l5l4p
∗
l4l1
fl1 = p∗l5l3p

∗
l3l1
fl1

ii) p∗l5l3p
∗
l3l2
fl2 = p∗l5l4p

∗
l4l2
fl2 . (L.-2)

Equality of i) and ii) in (L.-2) follows from using (L.6), we conclude

p∗l5l4 [p
∗
l4l1
fl1 − p∗l4l2fl2 ] = p∗l5l4gl4 = 0. (L.-2)

where gl4 := p∗l4l1fl1 − p∗l4l2fl2 . Now for any fl4 ∈ C(Xl4
) the condition fl4(pl5l4(xl5)) = 0

for all xl5 ∈ Xl5
means that fl4 = 0 because pl5l4 : Xl5

→ Xl4
is surjective (onto), therfore

p∗l4l1fl1 = p∗l4l2fl2 .

Lemma L.6.1

Lemma L.6.2 Let f, f ′ ∈ Cly(X) then the following operations are well defined (inde-
pendent of the representatives)

i)
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f + f ′ := [fl + f ′l ]∼ (L.-1)

ff ′ := [flf
′
l ]∼ (L.0)

zf := [zfl]∼ (L.1)

f := [f l]∼ (L.2)

where l, fl, f
′
l are as in the previous lemma, z ∈ C and f l denotes complex conjugation.

ii)

Cyl(X) contains the constant functions.

iii)

The sup-norm for f = [fl]∼

‖f‖ := sup
x1∈X1

|fl(xl)| (L.2)

is well defined.

Proof:

i)

We condiser only pointwise multiplication, the other cases are similar. Let l, fl1 , f
′
l1

and
l′, fl2, f

′
l2

as in lemma L.6.1. We find l1, l2 ≺ l3 and have p∗l3l1fl1 = p∗l3l2fl2 and p∗l3l1f
′
l1

=
p∗l3l2f

′
l2
. Thus

p∗l3l1(fl1f
′
l1
) = p∗l3l1(fl1)p

∗
l3l1

(f ′l1) = p∗l3l2(fl2)p
∗
l3l2

(f ′l2) = p∗l3l2(fl2f
′
l2
) (L.2)

thus fl1fl1 ∼ fl2f
′
l2
.

ii)

iii)

If [fl1 ]∼ = [fl2 ]∼ is given, choose any l1, l2 ≺ l3 so that we know that p∗l3l1fl1 = p∗l3l2fl2.
Then from the surjectivity of p∗l3l1 , p

∗
l3l2

we have

sup
xl1
∈Xl1

|fl1(xl1)| = sup
xl3
∈Xl3

|(p∗l3l1fl1)(xl3)| = sup
xl3
∈Xl3

|(p∗l3l2fl2)(xl3)| = sup
xl′1
∈Xl′1

|fl′1(xl1)| (L.2)
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Recall that a norm induces a metric on a liner space via d(f, f ′) := ‖f − f ′‖ and that
metric space is complete if all its Cauchy sequences converge to an element of the space.
Any metric space can be uniquely (up to an distance preserving mapping carrying every
point of the original metric space into itself, theorem J.4.4) embedded into a complete
metric space extending it by its non-converging Cauchy sequences. The original metric
space is dense in the extended one. We can complete Cyl(X) in the norm ‖.‖ and obtain
an Abelean, unital Banach ∗−algebra

Cyl(X)

But notice that not only the submulitiplicativity of the norm (‖ff ′‖ ≤ ‖f‖‖f ′‖) holds

but in fact the C∗ property ‖ff‖ = ‖f‖2. Thus Cyl(X) is in fact a unital, Abelean
C∗−algebra.

Denote by ∆(Cyl(X)) the spectrum of Cyl(X), that is, the set of all (algebraic, i.e.
not necessariliy continuous) homomorphisms from Cyl(X) to the complex numbers and
denote the Gel’fand isometric isomorphism by

∨

: Cyl(X) → C(∆(Cyl(X))); f 7→
∨

f where
∨

f (χ) := χ(f) (L.2)

where the space of continuous functions on the spectrum is equipped with the sup-norm.

........

It follows that χ(x) is a continuous linear (and therefore bounded) map from the normed
linear space Cyl(X) to the complete, normeed linear space C. Hence, by the bounded
linear transformation theorem (theorem J.4.6) each χ(x) can be uniquely extended to a

bounded linear transformation (with the same bound) from the completetion Cyl(X) of
Cyl(X) to C
........

Theorem L.6.3 The map χ in ... is a homeomorphism.

Proof:

Injectivity (one-to-oneness):

For χ to be one-to-one we must have χ(x) 6= χ(x′) whenever x 6= x′. Suppose then
that χ(x) = χ(x′). In particular [χ(x)](f) = [χ(x′)](f) for any f ∈ Cyl(X). Hence
fl(xl) = fl(x

′
l) for any fl ∈ C(Xl), l ∈ L. Since Xl is a compact Hausdorff space, C(Xl)
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separates points of Xl by the Stone-Weierstrass theorem (theorem J.11.4), hence xl = x′l
for all l ∈ L. It follows that x = x′.

Surjectivity (onto):

Let χ ∈ Hom(Cyl(X),C) be given.

Continuity:

We have established that χ is a bijection. We must show that both, χ, χ−1 are continuous.

The topology on ∆(Cyl(X)) is the weakest topology such that the Gel’fand transforms
∨

f, f ∈ Cyl(X) are continuous while the toplogy on X is the weakest topology such that
all projections pl are continuous,

Recall a mapping f from one topological space X to another Y is continuous if and only
if whenever (xα)I is a net convergent to x then the net (f(xα))I converges to f(x).

Continuity of χ:

Let (xα) be a net in X converging to x, that is, every net (xαl ) converges to xl.

hence χ(xα) → χ(x) in the Gel’fand topology.

Continuity of χ−1:

Let (χα) be a net in ∆(Cyl(X)) converging to χ,

Hence χ−1(χα) → χ−1(χ) in the Tychonov topology.

........

Corollary L.6.4 The closure of the space of cylindrical functions Cyl(X) may be iden-
tified with the space of continuous functions C(X) on the projective limit X.

Proof:
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L.6.1 The spaces X/G and X/G are Homeomorphic

L.7 Regular Borel Measures on the Projective Limit:

The Uniform Measure

Our spaces Xl are compact Hausdorff spaces and in particular topological spaces and are
therefore naturally equipped with σ−algebra Bl of Borel sets (the smallest σ−algebra
containing all open (equivalently closed) subsets of Xl).

regularity means that the measure of every measurable set can be approximately well by
open and compact sets (hence closed since Xl is compact Hausdorff by lemma J.9.6)

Definition A family of measures (µl)l∈L on the projections Xl of a projection family
(Xl, pll′)l≺l′ where the pl′l : Xl′ → Xl are continuous and surjective projections is said to
be consitent provided that

(pl′l)∗µl′ := µl′ ◦ p−1
l′l = µl (L.2)

for any l ≺ l′. The measure (pl′l)∗µl′ is called the push-forward of the measure µl′.

........

Definition The Hilbert space H0 is defined as the space of square integrable functions
over A with respect to the uniform measure µ0, that is

H0 := L2(A, dµ0). (L.2)

L.8 Operators

The specification of the topology in which the limit is taken is an integral part of the
definition of the operator.

For limits in the involved in the regularization of quantum field theoretical operators, the
limit cannot be taken in the Hilbert space topology where, in general, it does not exist.
The limit must be taken in the topology that “remembers” the topology in which the
corresponding limit is taken.

We say a sequence of qunatum states Ψn converges to a state Ψ if Ψn[A] converges to Ψ[A]
for all smooth connections A. We define a domain M as the set for which {Ψn} ⊂ M ,
Ψn → Ψ implies that Ψ ∈ M . We use the corresponding operator topology: On → O if
OnΨ → TO for all Ψ in the domain.
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Figure L.8: (a) A semianalytic curve in R3. (b) A semianalytic surface in R3.

L.9 Functional Calculus on a Projective Limit

Functions

Differential Forms

Volume Forms

Vector Fields

Lie Brackets

Vector Field Divergences

L.10 Density and Support Properties of A,A/G with

respect to A,A/G

In this section we will see that A lies topologically dense, but measure theoretically thin in
A (similar results apply to A/G with respest to A/G = A/G) with respect to the uniform
measure µ0.

We have seen that every element of A ∈ A defines an element of Hom(P, G) and that
this space can be identified with the projective limit X ≡ A. Now via the C∗-algebraic

framework we know that Cyl(X) can be identified with C(X) and the latter space of
functions separates the points ofX by the Stone-Weierstrass theorem (thereom J.11.4)
since it is Hausdorff and compact.
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Now does the set of functions Cyl(X) separates the set of points A. Let A 6= A′ be given
then there exists a point x ∈ σ such that A(x) 6= A′(x).

We therefore we have that a collection C = Cyl(X) of bounded complex valued functions
on a set X = A including the constants which separates the points of X. The following

result is an abstract property of Abelean unit C∗−algebras (in our case, C = Cyl(A) and
X = A).

Theorem L.10.1 Let C be a collection of real-valued, bounded functions on a set X which
contains the constants and separates points of X. Let C be the Abelean, unital C∗−algebra
generated from C by pointwise addition, multiplication, scalar multiplication and complex
conjugation, completed in the sup norm. Then the image of X under its natural embedding
into teh Gel’fand spectrum X of C is dense with respect to the Gel’fand topology on the
spectrum.

Proof:

.....

Let J(X) be the closure of J(X) in the Gel’fand topology on X of pointwise convergence
on C. Suppose that X − J(X) 6= ∅ and take χ ∈ X − J(X). Since X is a compact
Hausdorff space we find a ∈ C(X) such that 1 = a(χ) 6= a(Jx) = 0 for any x ∈ X by
Urysohn’s lemma, lemma J.9.10. (Urysohn’s lemma applies to normal spaces. Compact
Hausdorff spaces are normal spaces (theorem J.9.8). In Hausdorff spaces one point sets
are closed, hence {x} and J(X) are disjoint closed sets).

Since the Gel’fand map
∨

: C → C(X) is an isomorphic we find f ∈ C such that
∨

f= a.
Hence

0 = a(Jx) =
∨

f (Jx) = Jx(f) = f(x)

for all x ∈ X, hence f = 0, thus a ≡ 0 contracdicting a(χ) = 1. Therefore χ infact does
not exist whence X = J(X).

That is, A is topologically dense in A.

L.11 Uniqueness Theorem for the Ashtekar-Lewandowski

Representation

Fleischhack
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Every physical theory requires fundamental mathematical assumptions at the very begin-
ning. It is highly desirable to justify them by even more fundamental axioms that are
both mathematically and physically as plausible as possible.

This measure is “natural”, since the Haar measure on a Lie group is “natural” as well.
However, this is at most a mathematical statement or a statement of beauty. The deeper
question behind is how one can justify this choice by mathematical physics arguments.

representation theory - diffeomorphism invariance.

physical selection, one case is, a unitary representation of the spacial diffeormorphism
group (rather projective representation thereof as no representation of the infintesimal
constraints cannot be well defined [96]). Remrkably it has been possible to show that
such a representaion is unique ‘[6]’ . More precisely, in general ..... taken from [213]

Quantum Geometry: Representation on L2(A/G, µ0) is unique if

1. diffeomorphism invariant;

2. semianalytic.;

A natural idea is to first look at irreducible or at least cyclic representations as the simple
building blocks, out of which more complicated representations could eventually be built.

A simple formulation of these properties can be given by asking for a state (i.e. a positive,
normalized, linear functional) on U that it is invariant under the classical symmetry
automorphisms of U . Given a state ω on U one can define a representation via the GNS
construction. This representation will be cyclic by construction, (Hω, πω,Ωω),. If the
state is invariant under some automorphism of U , its action is automatically unitarily
implemented in the representation.

Let G be a group of automorphisms of the C ∗ −algebra O and ω a corresponding
G−invariant state on O. Then there is a cyclic representation (Hω, πω,Ωω)

πω(gA) = Uω(g)πω(A)Uω(g)
−1, Uω(g)Ωω = Ωω, (L.2)

for all g ∈ G and A ∈ O.

Briefly, ‘semianalytic’ means ‘piecewise analytic’. For example, a semianalytic sub-manifold
would be analytic except for on some lower dimensional sub-manifolds, which in turn have
to be piecewise analytic. We have already met the idea of semianalycity, see fig (L.9) (a).
To convey the general idea, fig (L.9) (b) depicts a semi-analytic surface in R3.
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analytic surfacecurve

Figure L.9: (a) A semianalytic curve in R3. (b) A semianalytic surface in R3.

eup

edown

eout

einS
~nS

Figure L.10: Types of edges with respect to a face.

L.11.1 Flux Operators

The left invariant vector field in the i−th internal direction on the copy of G corresponds
to the e-th edge

Lie · ψ(he1 , . . . , heN
) = (heτ

i)AB
∂ψ

∂(he)
A
B

=

(

d

dt

)

t=0

ψ(he1, . . . , hee
tτi , . . . , heN

)

Ri
e · ψ(he1 , . . . , heN

) = (τ ihe)
A
B

∂ψ

∂(he)
A
B

=

(

d

dt

)

t=0

ψ(he1, . . . , e
tτihe, . . . , heN

)

XS,n[f ] :=
1

2

∑

p∈S∩γ

∑

ep

σ(ep, S)ni(p)X
i
ep

[f ],

where the second sum is over the edges of γ adjacent to p,
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σ(ep, S) =







1 if ep lies above S

0 if ep ∩ S = ∅ or ep ∩ S = ep
−1 if ep lies below S

and X i
ep

is the ith left-invariant (right-invariant) vector field on SU(2) acting on the

argument of f corresponding to the holonomy hep
if ep is pointing away from (towards)

S.

Definition
W n
t (S) := etβℓ

2
p/2Yn(S) (L.2)

eLMe−L =
∞
∑

n=0

1

n!
[L,M ]n

Wγ(tγ)fWγ(tγ)
−1 = eYγ(tγ )fe−Yγ(tγ )

=

∞
∑

n=0

1

n!
[Yγ(tγ), f ](n)

= f + [Yγ(tγ), f ] +
1

2!
[Yγ(tγ), [Yγ(tγ), f ]] +

(L.0)

W n
t (S)W n′

t′ (S ′)(W n
t (S))−1 = etβℓ

2
p/2Yn(S)

(

∞
∑

m′

(t′βℓ2p/2)m
′

m′!
(Y n′

t′ (S ′))m
′)

e−tβℓ
2
p/2Yn(S)

=
∞
∑

m′

(t′βℓ2p/2)m
′

m′!

∞
∑

m=0

(tβℓ2p/2)m

m!
[Yn(S), (Y n′

t′ (S ′))m
′

](m)

=

(L.-2)

L.11.2 Algebra of Cylindrical Functions and Space of Gener-

alised Connections

As we have seen there are several complementary characterisations of the Kinematic
Hilbert space.

C∗−algebraic characterisation.
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Cyl∞ is an algebra: We know that if Ψ is compatible with γ and if γ′ ≥ γ, then Ψ is
compatible with γ′ as well. First note that every element Ψ of the space of finite linear
coombination of smooth cylindrical functions {Ψi} (i = 1, . . . , k) compatible, respectively,
with graphs {γi}. There exists a graph γ such that γ ≥ γi for each i and so every function
Ψi is compatible with γ. Hence Ψ is a smooth cylindrical function compatible with γ
also. Now, given elements Ψ and Ψ′ of Cyl∞ we can find a graph γ′ such that the two
functions are compatible with it. Then ΨΨ′ is a smooth cylindrical function compatible
with γ′, thus an element of Cyl∞.

The completion Cyl of Cyl with respect to the sup norm ‖f‖ := supA∈A |f(A)| defines

an Abelean C∗−algebra. Define the space of generalsed connections A as its Gel’fand
spectrum ∆(Cyl). By the Gel’fand isomorphism we can think of Cyl∞ as the space C(A)
of continuous functions on the spectrum. The spectrum of an Abelean C∗−algebra is a
compact Hausdorff space if equipped with the Gel’fand topology of pointwise convergence
of nets. Hence, by the Riesz-Markov theorem the postive linear functional ω is in one
to one correspondence with a regular Borel measure µ on A. The Hilbert space H :=
L2(A, dµ) is the space of square integrable functions on A with respect to that measure.

L.11.3 Generalized Vector Fields Tangent to A

Definition The momentum variable space defined by a given space of smearing functions
F is the real vector space spanned by the linear maps π(f) such that f ∈ F .

P

Π

Σ

Figure L.11: Automorphisms of the bundle P implies action of the bundle automorphism
group in the qunatum ∗−algebra .

Let S be a face. Consider the bundle
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PS := Π−1(S) ⊂ P (L.-2)

P

Π−1

S

Σ

Figure L.12: .

Given a face S, a smearing

L.11.4 The Quantum ∗−algebra

(a1, . . . , an) · (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm) (L.-1)

(a1, . . . , an)
∗ = (an, . . . , a1). (L.0)

L.11.5 Symmetries of A
The group of semianalytic automorphisms of the principal fiber bundle P act naturally
in the space A of connections.

L.11.6 Implementation of Piecewise Analytic Diffeomorphisms

on Hkin

It is straightforward to implement the action of piecewise analytic diffeomorphisms on
Hkin: This Hilbert space consists of functions f : A → C, which are cylindrical over
some graph γ. The space of quantum configurations A, i.e. the space of (distributional)
connections on Σ carries a natural action of the diffeomorphism group Diff Σ. An element
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φ ∈ Diff Σ simply acts by A → φ∗A on a (distributional) connection A. With this, one
can simplt define the action of Diff Σ on Hkin by

αφf(A) := f(φ∗A)

where φ∗A is the pullback of the connection A under the diffeomorphism φ. Note that
this defintion maps

αφHγ → Hφ(γ). (L.0)

Let us discuss the action of the automorphisms/diffeomorphisms. One can build out of a
map ϕ : Σ → Σ an induced map Bϕ : P → P of bundles by combining into one object
all the maps of fibres induced by ϕ: that is, for each v ∈ P

Bϕ(v) = ϕ∗Π(v)v.

It cam be shown that

Π ◦Bϕ = ϕ ◦ Π

For every bundle automorphism

ϕ̃ : P → P (L.0)

there is a unique diffeomorphism

ϕ : Σ → Σ (L.0)

such that

Π ◦ ϕ̃ = ϕ ◦ Π. (L.0)

In our case both of them are semianalytic.

Definition Preservation of a fibre. The map ϕ̃ respects the bundle structure of P in
the sense that if v and v′ belong to the same fibre of P then their images ϕ̃(v) and ϕ̃(v′)
belong to the same fibre of P : this is the content of the property =.
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ϕ

ϕ̃ PP

Σ
Σ

ΠΠ

Figure L.13: A bundle map.

ϕ̃

ΣΣ

Figure L.14: Pictural illustraiton of a bundle map which preserves every fibre. The
corresponding map on the base space is the identity - to be called a Yang-Mills gauge
transformations.

A map ϕ̃ : P → P which maps each fibre to itself is a particular case of a bundle map in
which the corresponding map of the base is just the identity map of Σ.

In a sense the bundle automorphisms represent also the diffeomorphisms of Σ.

It is easy to check, that the new flow is the flow of the vector field Xϕ(S),ϕ̃∗f
.

L.11.7 Proof

In the Ashtekar-Lewandowski representation, ω0, the quantum flux operator Xs,f van-
ishes: πω0

[Xs,f ] = 0. The main part of the proof of the uniqueness theorem is to show
that a consequence of diffeomorphism invaraince of any representation is the vanishing
of the quantum flux operator, as it is fairly straightforward to show that the Ashtekar-
Lewandowski representation is the only diffeomorphism invariant representation with this
property.

Theorem L.11.1
[XS,f ] = 0 (L.0)
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Of course [a] := {a + b : b ∈ A such that ω(b∗b) = 0} is the equivalence class of a ∈ A

with respect to the Gel’fand ideal of null vectors.

Proof:

For each point p ∈ supp(n), by the defnition of a face S we find a neighbourhood Up of p
and a chart xp whose domain contains Up such that

χp(S ∩ Up) = {x ∈ RD : xD = 0, 0 < x1, . . . , xD−1 < 1}

U ′x

S

ΣRn χx

xD

UI ∩ S

Figure L.15: xI defined such tha the above is so.

Since the support of n is compact in P , choose a finite subcovering {UI}NI=1 of Π(suppf)
with associated charts xI . By the local character of semianalytic structures, there is a par-
tition of unity subordinate to the covering {UI}, i.e., there exists a family of differentiable
functions χI(x) such that

(i) 0 ≤ χI(x) ≤ 1

(ii) χI(x) = 0 if x 6= UI

(iii)
∑N

I χ1(x) = 1 for any point x ∈ M.

From (iii) it follows that

n(x) =
∑

I

n(x)χI(x) =
∑

I

nI(x)
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where nI(x) ≡ n(x)χI(x) vanishes outside of UI by (ii).

Hence

n =

n
∑

I−1

nI

everwhere on Σ where

nI = n · χI .

There doesn’t exist global coordinates which ensure a basis for the collection of vector
fields. The most that can be said is that for any point has a neighbourhood on which
local vector fields are defined which form a basis of the tangent space at each point in the
neighbourhood.

Furthermore, we may decompose

nI =
∑

j

njIτj (L.0)

where τj is a basis in the Lie algebra of G and set nIj = njIτj (no summation). It follows
that

[Xn(S)] =

N
∑

I=1

dim (G)
∑

j=1

[XIj(S)]

and the result will follow from proving that [XIj(S)] = 0.

Consider for fixed I, j the following functional which assigns a number to any given pair
of compactly supported functions nIj, n

′
Ij : S ∩ UI → R,

(nIj , n
′
Ij)S := <

[

XnIj
(S)∗

]

,
[

Xn′
Ij

(S)
]

> := ω(XnIj
(S)∗Xn′

Ij
(S)) (L.0)

The product (·, ·)S has the following properties:

(i) It is obviously bilinear and, due to the reality of the n, n′, also symmetric.

(ii) It is invariant under semianalytic diffeomorphisms ϕ which preserve S and have sup-
port in UI ,
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p

ϕ(p)

nIj n′Ij

ϕ−1

Σ Σ

R
n′Ij(ϕ(p)) := nIj(p)

Figure L.16: The pull-back (ϕ)∗nIj of the scalar function nIj(x) is given by n′Ij = nIj◦ ϕ−1.

The point of the decomposition (L.11.7) is that, if additionally ϕ preserves S, then the
action of ϕ̃ on XnIj

(S) amounts to

αϕ̃XnIj
(S) = X(ϕ)∗nIj

(S) = XnIj◦ϕ−1(S).

It follows that the product (·, ·)S is invariant under the specified ϕ̃

(nIj, n
′
Ij)S = ω

(

αϕ
[

XnIj
(S)∗Xn′

Ij
(S)
])

:= ω
(

XnIj◦ϕ
(ϕ(S))∗Xn′

Ij
◦ϕ(ϕ(S))

)

= (nIj ◦ ϕ−1, n′Ij ◦ ϕ−1)S. (L.-1)

For n = n′

‖[XnIj
(S)]‖2 =

〈[

XnIj
(S)∗Xn′

Ij
(S)
]〉

= ω(XnIj
(S)∗XnIj

(S)). (L.-1)

The trick to proving ω([XnIj
]∗[XnIj

]) = 0 is to construct (which will be done in the next

two lemmas) a semianalytic diffeomorphism ϕt which reduces to identity outside UI , a
semianalytic function NIj, and another semianalytic function f with f |S = 1 such that

(ϕt)
∗NIj = NIj + tfnIj (L.-1)

for all 0 < t < t0, to which we can then apply (L.-1). This results in
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(NIj, NIj)S = ((ϕt)
∗NIj, (ϕt)

∗NIj)S
= (NIj + tfnIj , NIj + tfnIj)S

= (NIj, NIj)S + 2t(NIj , nIj)S + t2(nIj , nIj)S (L.-2)

Since this holds for all 0 < t < t0 we may divide by t > 0 and find

2(NIj, nIj)S + t(nIj, nIj)S = 0 (L.-2)

for all 0 < t < t0. Subtracting this equation evaluated at 0 < t1 < t2 < t0 one easily sees
that (nIj , nIj)S = 0.

Lemma L.11.2 There is t0 > 0 such that for every 0 < t < t0, ϕ
′
t is a semianalytic

diffeomorphism of RD equal to the identity outside of U ′I and preserving U ′I .

Proof: Using the coordinate system xI associated with UI we set U ′I = xI(UI),

S ′I = xI(S ∩ UI) = {x ∈ RD : xD = 0, 0 < x1, . . . , xD−1 < 1}

UI

U ′IU ′I

S

ΣΣ RnRn xIxI

S ′I

UI ∩ S

(a) (b)

Figure L.17: xI defined such tha the above is so.

and construct

nIj ◦ x−1
I : S ′I → R.
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UI

U ′I

S

ΣRn x−1
I

nIj

n′Ij

S ′I R
Figure L.18: .

To extend n′Ij to U ′I , let f ′ : R → R be an arbitrary semianalytic function subject to
f ′(0) := 1 and such that

ñ′Ij(x
1, . . . , xD) := n′Ij(x

1, . . . , xD−1)f ′(xD)

From all this we can now define a map ϕ′t : RD → RD, where t is a real parameter by

ϕ′t(x) = (x1 + tñ′Ij(x
1, . . . , xD), x2, . . . , xD). (L.-2)

det

(

∂ϕ′t(x)

∂x

)

= 1 + t
∂ñ′Ij(x)

∂x1
= 1 + tf ′(xD)

∂n′Ij(x
1, . . . , xD−1)

∂x1
(L.-2)

The function f ′∂n′Ij/∂x
1 has compact support in U ′I and is at least continuous there.

Thus, it is uniformally bounded whence there exists t0 > 0 such that 1+ tf ′∂n′Ij/∂x
1 > 0

for all 0 < t < t0.

Hence ϕ′t is locally a semianalytic (since f ′, n′Ij, x
k
I are semianalytic) diffeomorphism, pro-

vided 0 < t < t0. It is also a global diffeomorphism because outside of U ′I it acts as the
identity.

A map which is identity in a subset will fail to preserve the complement only if it is not sur-
jective and injective. That ϕ′t preserves U ′I then follows from the fact that diffeomorphims
are always bijective.
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Lemma L.11.3
NIj ◦ ϕ−1

t = NIj + tfnIj .

Proof: We construct a semianalytic function N ′Ij with support in U ′I such that

N ′Ij(x
1, . . . , xD) = x1 whenever (x1, . . . , xD) ∈ supp n′Ijf

′. (L.-2)

This is easily done by using an appropriate partition of unity.

We compute

[(ϕ′∗t )N ′Ij](x
1, . . . , xD) = N ′Ij(x

1 + tñ′Ij(x
1, . . . , xD), x2, . . . , xD)

=

{

N ′Ij(x
1 + tñ′Ij, x

2, . . . , xD) x ∈ supp (ñ′Ij)

N ′Ij(x
1, x2, . . . , xD) x /∈ supp (ñ′Ij)

=

{

x1 + tñ′Ij(x) x ∈ supp (ñ′Ij)

N ′Ij(x
1, x2, . . . , xD) x /∈ supp (ñ′Ij)

=

{

N ′Ij(x) + tñ′Ij(x) x ∈ supp (ñ′Ij)

N ′Ij(x
1, x2, . . . , xD) x /∈ supp (ñ′Ij)

= N ′Ij(x) + tñ′Ij(x) (L.-5)

Let us deonte by NIj , nIj, f, ϕt the pull-back by xI of N ′Ij, n
′
Ij , f

′, ϕ′t. Since xI is a bijection
and N ′Ij , n

′
Ij have compact support in U ′I , it follows that NIj, ñIj = fnIj have compact

support UI = x−1(U ′I). We may thus extend them to all of Σ by setting them equal to
zero outside of UI . Likewise, ϕt equals the identity outside of UI and preserves UI for
0 < t < t0. Furthermore (L.-5) translates into

(ϕt)
∗NIj = NIj + tfnIj .

Notice that

[ϕ′t(x)]
D = xD

preserves xD = 0, hence it preserves S ′I and therefore ϕt preserves SI = UI ∩S. Since it is
the identity outside of UI , ϕt and its inverse are diffeomorphisms which preserve S. Also
we see that f = 1 on SI since f ′ = 1 when xD = 0.

∫

A

XS,f(Ψ)dµ = 0 (L.-5)
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Σ ΣΣ R
Rn RnRn xI xI x−1

I

ϕt

ϕt

ϕ′t

NIj

N ′Ij

(a) (b)

Figure L.19: (a) Pull-back NIj of N ′Ij under xI is given by N ′Ij ◦ xI . (b) Pull-back ϕt of

ϕ′t under xI is given by x−1
I ◦ ϕ′t ◦ xI

Let us recall, that any regular, Borel, probability measure µ on the space A is uniquely
determined by its projections µγ on the spaces Aγ. Therefore, to prove the lemma it is
enough to find out what restrictions are imposed by ()

Lemma L.11.4 Every compact connected Lie group, G is isomorphic to a quotient G̃/M ,
where M is a central discrete subgroup of G̃, and G̃ is a simple product

G̃ = T × P,

(that is, any h ∈ G̃ can be written as tp where t ∈ T and p ∈ P ), of an abelian group T
and a semisimple group P .

Proof:

Recall that each Lie group possesses a Lie algebra g isomorphic to the tangent vector space
at the identity element of the Lie group. An ideal in a Lie algebra is a Lie subalgebra
h ⊂ g such that [X, Y ] ∈ h for all X ∈ h, Y ∈ g. An ideal is said to be an invariant
subalgebra.

An ideal is the Lie algebra equivalent of a closed, normal subgroup of a connected Lie
group.

A connected Lie group can be defined to be simple if its Lie algebra is simple, or equiva-
lently, if it contains no non-trivial, closed, connected normal subgroups. Under this def-
inition, a simple connected Lie group can possess non-trivial, closed, normal subgroups,
but if they exist they must be discrete.
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A semisimple Lie algebra can be defined as a Lie algebra which has no non-trivial abelian
ideals, but here we wish to characterise it as a Lie algebra which is the direct sum of
simple Lie algebras. Semisimple Lie groups arae the direct products of simple Lie groups.

Clearly, a simple Lie algebra is semisimple.

Lemma L.11.5

Proof:

Let us consider an arbitrary graph γ consisting of edges {e1, . . . , eN}. Divide each edge
eI

eI = eI,1 ◦ eI,2

see fig (L.20)

(a) (b)

γ Γ

e1

e2

e3

e1,1

e1,2

e2,1
e2,2

e3,1 e3,2

v1

v2

v3

Figure L.20: e1 = e1,1 ◦ e1,2

e1 = e1,1 ◦ e1,2

where:

gi(A) := (A(e1,i), . . . , A(e1,N)) ∈ GN

ΨΓ = ψ(g1(), g2)
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Γ

S

C1

C2

C3

Figure L.21: We let S consist of 3 disjoint cubes C1, C2, C3.

Semisimple case

Suppose the function f is defined on S in the following way

f
∣

∣

∣

CI

:= constIfI ∈ P ′

Consider the operator

X̂S,f =
N
∑

I=1

X̂CI ,fI
.

Assuming that ΨΓ is a smooth cylindrical function,

0 =

∫

A

X̂S,fΨΓ dµ

=

∫

AΓ

X̂S,fψ dµΓ

=

N
∑

I=1

∫

AΓ

X̂CI ,fI
ψ dµΓ

= − i

2

∫

G2N

d

ds

∣

∣

∣

s′=0
ψ(g1 exp(~fs′), exp(~fs′)g2) dµΓ

= − i

2

d

ds′

∣

∣

∣

s′=0

∫

G2N

ψ(g1 exp(~fs′), exp(~fs′)g2) dµΓ (L.-8)

where
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~f := (f1, . . . , fN)

and

exp(~fs) = (exp(f1s), . . . , exp(fNs)) ∈ PN .

using this equality on the function

ψ̃(g1, g2) := ψ(g1 exp(~fs), exp(~fs)g2)

and that

d

ds′

∣

∣

∣

s′=0
ψ̃(s′ + s) =

d

ds
ψ̃(s)

results in

0 =
d

ds′

∣

∣

∣

s′=0

∫

G2N

ψ̃(g1 exp(~fs′), exp(~fs′)g2) dµΓ

=
d

ds′

∣

∣

∣

s′=0

∫

G2N

ψ(g1 exp(~f(s+ s′)), exp(~f(s′ + s))g2) dµΓ

=
d

ds

∫

G2N

ψ(g1 exp(~fs), exp(~fs)g2) dµΓ (L.-9)

As the group is connected

∫

G2N

ψ(g1b, bg2) dµΓ =

∫

G2N

ψ(g1, g2) dµΓ (L.-9)

for every b ∈ PN .

ζ(a, a′) :=

∫

G2N

ψ(g1a, a
′g2) dµΓ

Equation (L.11.7) implies

ζ(ba, a′b) = ζ(a, a′) (L.-9)
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for every b ∈ PN . Let b = a−1. Then

ζ(a, a′) = ζ(IP , a′a−1) =: ξ(a′a−1),

where IP is the identity element of PN . Now, () reads

ξ(a′ba−1b−1) = ξ(a′a−1).

The substitution b0 = a′a−1 gives an identity

ξ(b0aba
−1b−1) = ξ(b0), (L.-9)

which holds for every a, b, b0 ∈ PN . We now use this to prove that the function ξ, and
consequently the function ζ , is constant. Let L1, L2 be arbitrary left invariant vector fields
on PN , then the vector [L1, L2]b0 tangent to PN at the point b0 can be generated by a
curve of the form

b0a(t)b(t)a
−1(t)b−1(t)

for t small has the geometric interpretation of fig (L.22). Thus (L.11.7)

[L1, L2]b0ξ = 0

b0

Figure L.22:

The commutator of two left invariant vector fields is also a left invariant vector field. This
can easily be seen by fig (). The importance of this is that left invariant vector fields form
a Lie algebra are isomorphic to the Lie algebra P ′N as the Lie algebra g is isomorphic to
the tangent vector space at the identity element of the Lie group..
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e

g

L1

L1 L2

L2

Figure L.23:

As the group PN is semisimple, the algebra satisfies [P ′N , P ′N ] = P ′N . So for arbitrary
left invariant vector field L

Lb0ξ = 0

Hence the function ξ and consequently the function ζ are both constant. Thus

∫

G2N

ψ(g1b1, b2g2) dµΓ =

∫

G2N

ψ(g1, g2) dµΓ (L.-9)

for every smooth function ψ on G2N and for every b1, b2 ∈ PN .

Abelian case

Γ
C1,1

C2,1

C3,1

C1,2

C2,2

C3,2

Figure L.24: We let S consist of 6 disjoint cubes C1,1, C2,1, C3,1, C1,2, C2,2, C3,2.

the operator
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X̂S,f =

N
∑

I=1

X̂CI,i,fI,i
.

∫

G2N

ψ(g1t1, t2g2) dµΓ =

∫

G2N

ψ(g1, g2) dµΓ (L.-9)

for every smooth function ψ on G2N and for every t1, t2 ∈ TN .

Combined

∫

G2N

ψ(g1t1b1, t2b2g2) dµΓ =

∫

G2N

ψ(g1, g2) dµΓ

for every tibi ∈ TN × PN , that is

∫

G2N

ψ(g1h1, h2g2) dµΓ =

∫

G2N

ψ(g1, g2) dµΓ (L.-9)

for every hi ∈ G̃N

Obviously the space C∞(G2N ,C) separates the points of G2N and includes the constant
functions, so the Stone-Weiestrass theorem applies, showing that the closure C∞(G2N ,C)
with respect to the sup-norm is C0(G2N ,C) and therefore equation (L.11.7) holds for every
ψ ∈ C0(G2N ,C).

If we swap the function ψ(g1, g2) by the function ψ(g1, g
−1
2 ) then

∫

G2N

ψ(g1h1, (h2g2)
−1) dµΓ =

∫

G2N

ψ(g1h1, g
−1
2 h−1

2 ) dµΓ =

∫

G2N

ψ(g1, g
−1
2 ) dµΓ

consider the map

ω(g1, g2) 7→ ω(g1, g2) := (g1, g
−1
2 )

with the push forward measure

µ∗Γ := ω∗µΓ.

then
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∫

G2N

ψ(g1, g2) dµ
∗
Γ =

∫

G2N

ψ(g1h1, g2h
−1
2 ) dµ∗Γ (L.-8)

for every (h1, h2) ∈ GN ×GN .

The Haar measure µ∗Γ on G2N is a product of two copies of the Haar measure µH on GN .
Since G is compact, left and right invaraint measures on the group coincide. Therefore
we can write

∫

G2N

ψ(g1, g2) dµ
(1)
H dµ

(2)
H =

=

∫

G2N

ψ(g1, g
−1
2 ) dµ

(1)
H dµ

(2)
H (L.-8)

and so

µ∗Γ = µΓ.

Then gives for every (h1, h2) ∈ GN ×GN

∫

G2N

ψ(g1, g2)dµΓ =

∫

G2N

ψ(g1h1, g2h2)dµΓ.

Every graph Γ is obtained by a subdivision of some graph γ, hence every cylindrical
function Ψ compatible with γ is also compatible with Γ. Recall that if Ψ is compatible
with two grpahs γ, γ′, then

∫

Aγ

ψdµγ =

∫

Aγ′

ψ′dµγ′,

and we conclude the push forward measure is the Haar measure on G|E(γ)|. As the graph
γ is arbitrary,

µ = µAL.
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L.12 Irreduciblity of the Ashtekar-Lewandowski Rep-

resentation

First let γ be a graph and split each edge e ∈ E(γ) into two halves e = e′1 ◦ (e′2)
−1 and

replace the e’s the e′1, e
′
2. We obtain a graph γ′ which occupies the same points in Σ as γ

but changes the set of edges of γ in such a way that each edge is outgoing from the vertex
b(e′) = v ∈ V (γ). We call a graph refined in this way a standard graph. The reason for
using this freedom is to simplify the following discussion. For notational simplicity we
denote standard graphs as γ from now on.

γ γ′
e1

e2

e3

e′1

e′2

(a) (b)

break
point

Figure L.25: The graph γ′ is the standard graph associated with the original graph γ.

Lemma L.12.1 Let γ be a standard graph. Assign to each e ∈ E(γ) a vector te =

(tje)
dim(G)
j=1 and collect them into a label tγ = (te)e∈E(γ).

Then there exists a vector field Y (tγ, γ) in the Lie algebra of the flux fields YS,f such that
for any cylindrical function f = p∗γfγ over γ we have

Yγ(tγ)p
∗
γfγ = p∗γ

∑

e∈E(γ)

tjeR
e
jfγ . (L.-8)

Any compact connected Lie group G has the structure G/Z = A×S where Z is a discrete
subgroup, A is an abelean Lie group and S is a semisimple Lie group.

Abelean case:

Consider any e ∈ E(γ) and take any surface Se which intersects γ only

Yj(Se)p
∗
γfγ = p∗γ[R

j
e2
− Rj

e1
]fγ (L.-8)
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γ

Se

e1e2

Figure L.26: Abelean case

Due to gauge invariance

(τ ihe1)
A
B

∂f

∂(he1)
A
B

+ (τ ihe2)
A
B

∂f

∂(he2)
A
B

= 0

[Rj
e1

+Rj
e2

]fγ = 0,

thus

Y j
e p
∗
γfγ =

1

2
Yj(Se)p

∗
γfγ (L.-8)

is an appropriate choice.

Non-Abelean case:

γ

S

e

v
e′1

e′2

Figure L.27: Non-Abelean case

An analytic surface S is completely determined by its Taylor coefficients in the expansion
of its parameterisation
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S(u, v) =
∞
∑

m,n=0

umvn

m!n!
S(m,n)(0, 0) (L.-8)

e is determined

e(t) =
∞
∑

n=0

tn

n!
e(n)(0) (L.-8)

In order that s ⊂ S we just need to choose a parameterisation of S such that S(t, 0) = e(t)
which fixes the Taylor coefficients

S(m,0)(0, 0) = e(m)(0) (L.-8)

for all m. Say that the other edges e′1, . . . e
′
n were to have a beginning segment sk of e′k in

S then there would be an analytic function vk(t), such that

sk(t) = S(t, vk(t)).

Obviously, we can not have vk(t) = 0 in an arbitrary small neighbourhood of t = 0

otherwise sk = se. For each k let nk be the first derivative such that v
(nk)
k (0) 6= 0. By

relabeling the edges we may arrange that n1 ≤ n2 ≤ · · · ≤ nN . Consider k = 1 and take
the n1−th derivative at t = 0. We find

dn1

dtn1
s1(0) = S(n1,0)(0, 0) + S(0,1)(0, 0)

dn1

dtn1
v1(0)

Since v
(n1)
1 6= 0 we can arrange the surface S, by using the freedom in S(n1,0)(0, 0), so that

this equation does not hold and hence sk is not in S.

dn2+1

dtn2+1
s1(0) = S(n1,0)(0, 0) + 2S(1,1)(0, 0)

dn1

dtn1
v2(0) + S(0,1)(0, 0)

dn2+1

dtn2+1
v2(0)

Since v
(n2)
2 6= 0 we can use the freedom in S(1,1) in order to violate this equation. Proceed-

ing in this way we can use the coefficients S(k−1,1) in order for the edges to be transversal
to S.

Having constructed the surfaces Sv,e we can compute the associated vector field applied
to a cylindrical function over γ
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Yj(sv,e)p
∗
γfγ = p∗γ

∑

e′∈E(γ)−{e},b(e′)=v

σ(sv,e, e
′)Rj

e′fγ (L.-8)

Taking the commutator

[Yj(sv,e), Yk(sv,e)]p
∗
γfγ = Yj(sv,e)p

∗
γ

∑

e′

σ(sv,e, e
′)Rk

e′fγ − (j ↔ k)

= p∗γ
∑

e′

σ(sv,e, e
′)
∑

e′′

σ(sv,e, e
′′)Rl

e′′R
k
e′fγ − (j ↔ k)

= fjkl p
∗
γ

∑

e′

Rl
e′fγ (L.-9)

where we used

[Rj
e′′ , R

k
e′] = δe′′,e′fjklR

l
e′.

Rj
v :=

∑

e′∈E(γ),b(e′)=v

Rj
e′

we get

fjkl[Yk(sv,e), Yl(sv,e)]p
∗
γfγ = p∗γ [R

j
v − Rj

e]fγ

This, if nv is the valence of v

Y j
e p
∗
γfγ :=

(

− fjkl[Yk(sv,e), Yl(sv,e)] +
1

nv − 1

∑

e′∈E(γ)

fjkl[Yk(sv,e′), Yl(sv,e′)]
)

p∗γfγ

= −p∗γ [Rj
v − Rj

e]fγ +
1

nv − 1

∑

e′∈E(γ),b(e′)=v

p∗γ [R
j
v − Rj

e′]fγ

= −p∗γ [Rj
v − Rj

e]fγ + (
nv

nv − 1
− 1)Rj

vp
∗
γfγ

= p∗γR
j
efγ (L.-11)

Collecting the vector fields Y j
e for the Abelean and non-Abelean labels j respectively and

contracting them with tje and summing over e ∈ E(γ) yields an appropriate vector field
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Yγ(tγ) =
∑

e∈E(γ)

tjeY
j
e . (L.-11)

Actually, here we have impiciyly assumed that where no e ∈ E(v) is (a segment of) the
analytic extension through v of another edge e′ ∈ E(v). We also need to consider the
case where there is at least one pair of edges e, ẽ ∈ E(v) that are (segments of) analytic
continuations of each other through v. See [31] for details.

Recall that the Hilbert space H0 has an orthonormal basis of particular cylindrical func-
tions - the spin network functions - labeled by a spin network s = (γ, {πe}, {me}, {ne})e∈E(γ)

defined by

Ts(A) =
∏

e∈E(γ)

{
√

dπe
[πe(he)]mene

}

where π denotes an irreducible representation of G. Later we will need the right action
Rj
e on Ts which is easily computed

Rj
eTs = [τ jπ(he)]mn

∂Ts
∂[π(he)]mn

=
√

dπe1
[πe1(he1)]me1ne1

. . . [τj ]mele

√

dπe
[πe(he)]lene

. . .
√

dπeN
[πeN

(heN
)]meN

neN

We now define for any two ψ, ψ′ ∈ H0 the function

Mψ,ψ′(tγ, Iγ) := < ψ, Tγ,Iγ Wγ(tγ)ψ
′ >H0

(L.-13)

We exploit that for a compact connected Lie group the exponential map is onto.

Thus, there exists a region DG ⊂ Rdim(G) such that exp : DG → G; t 7→ exp(tjτj) is a

bijection. Consider the measure µ on DG defined by dµ(t) = dµH(exp(tjτj)) where µH is
the Haar measure on G. Finally, let Dγ =

∏

e∈E(γ)DG and let Lγ be the space of the Iγ.

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ :=

∫

Dγ

dµ(tγ)
∑

Iγ

Mψ1,ψ′
1
(tγ, Iγ) Mψ2,ψ′

2
(tγ, Iγ) (L.-13)

where dµ(tγ) =
∏

e∈E(γ) dµ(te).
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Lemma L.12.2 i) For any ψ1, ψ
′
1, ψ2, ψ

′
2 ∈ H0 we have

|(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ| ≤ ‖ψ1‖ ‖ψ′1‖ ‖ψ2‖ ‖ψ′2‖ (L.-13)

ii) For any ψ1, ψ
′
1, ψ2, ψ

′
2 ∈ H0,γ we have

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ = < ψ2, ψ1 >H0

< ψ′1, ψ
′
2 >H0

(L.-13)

where H0,γ denotes the closure of the cylindrical functions over γ.

Proof:

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ =

∫

Dγ

dµ(tγ)
∑

Iγ

∫

A

dµ0(A)

∫

A

dµ0(A
′)Tγ,Iγ (A)Tγ,Iγ (A

′)

ψ1(A)[Wγ(tγ)ψ
′
1](A)ψ2(A

′)[Wγ(tγ)ψ
′
2](A

′)

=

∫

Dγ

dµ(tγ)

∫

A

dµ0(A)

∫

A

dµ0(A
′)[
∑

Iγ

Tγ,Iγ (A)Tγ,Iγ (A
′)] . . .

=

∫

A

dµ0(A)

∫

A

dµ0(A
′)

∫

Dγ

dµ(tγ)δγ(A,A
′) . . . (L.-15)

where we have defined the cylidrical δ−distribution

δγ(A,A
′) =

∏

e∈E(γ)

δµH
(he[A], he[A

′])

which comes from the Plancherel formula

δµH
(g, g′) =

∑

π,m,n

Tπ,m,n(g)Tπ,m,n(g
′).

f(A) = F (A|γ, A|γ) (L.-15)

the (effective) measure on Aγ by

∫

Aγ

dµ0γ(A|γ)

[

∫

Aγ

dµ0γ(A|γ)F (A|γ, A|γ)

]

=

∫

A

dµ0(A)f(A). (L.-15)
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all occuring f are countable linear combinations of spin network functions

Ts =
∏

e′∈E(γ∪γ(s))−E(γ)

{
√

dπe′
[πe′(he′)]me′ne′

}
∏

e∈E(γ)

{
√

dπe
[πe(he)]mene

}.

Thus either integral can be written as a countable linear combination of integrals over
spin-network functions Ts and then the prescription is to integrate only either over the
degrees of freedom A(e), e ∈ E(γ) or A(e′), e′ ∈ E(γ(s) ∪ γ) − E(γ) for each individual
integral with the corresponding product Haar measure.

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ =

∫

Dγ

dµ(tγ)

∫

Aγ

dµ0γ(A|γ)

∫

Aγ

dµ0γ(A
′
|γ)

∫

Aγ

dµ0γ(A|γ)

× Ψ1(A|γ, Aγ)[Wγ(tγ)Ψ
′
1](A|γ , Aγ)Ψ2(A

′
|γ, Aγ)

× [Wγ(tγ)Ψ
′
2](A

′
|γ, Aγ)

(L.-17)

In order to evaluate the Weyl operators, consider a spin network function Ts cylindrical
over γ(s) which we write in the form

Ts(A) = F ({he′}E(γ∪γ(s))−E(γ), {he}e∈E(γ)) (L.-17)

γ

γ ∪ γ(s) − γ

e1

e2

e3

Figure L.28:

We know how the vector field Yγ(tγ) acts on functions cylindrical over γ, (L.12.1), but
how does it act on γ(s) ∪ γ − γ?

it is easy to see that the action of Yγ(tγ) on Ts is given by

Yγ(tγ)Ts = p∗γ(s)∪γ [
∑

e′∈E(γ∪γ(s))−E(γ)

te
′

j (tγ)R
j
e′ +

∑

e∈E(γ)

tejR
j
e]F (L.-17)
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γ

Se

Sv,e

v

Figure L.29: Action of Yγ(tγ) on Ts

where te
′

j (tγ) is a certain linear combination of the tej depnding on e′ and the concrete
surfaces Se, Sv,e used in the construction of Yγ(tγ).

Yγ(tγ) Ts = F [{te′j (tγ)τjhe′}e′∈E(γ∪γ(s))−E(γ) + {tej}e∈E(γ)τjhe] (L.-16)

so that

Wγ(tγ)Ts =

∞
∑

m=0

1

m!
Yγ(tγ)

m Ts

= F ({ete
′

j (tγ )τjhe′}e′∈E(γ∪γ(s))−E(γ), {et
e
jτjhe}e∈E(γ)) (L.-16)

the map αtγ : A → A; A 7→ Wγ(tγ)AWγ(tγ) is just some right or left translation.

|(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ| ≤

∫

Dγ

dµ(tγ)

∫

Aγ

dµ0γ(A|γ)

∫

Aγ

dµ0γ(A|γ)|Ψ1(A|γ , Aγ)| |Ψ′1(αtγ (A|γ), αtγ (Aγ))|
∫

Aγ

dµ0γ(A
′
|γ)|Ψ2(A

′
|γ , Aγ)| |Ψ′2(αtγ (A′|γ), αtγ (Aγ))|.

(L.-18)

Consider the second line on the R.H.S., by the Cauchy-Schwarz inequality applied to
functions [Ψ1(Aγ)](A|γ) = Ψ1(A|γ, A|γ) in L2(Aγ, dµ0γ) we can estimate
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∫

Aγ

dµ0γ(A|γ)|Ψ1(A|γ, Aγ)| |Ψ′1(αtγ (A|γ), αtγ (Aγ))|

≤
(

∫

Aγ

dµ0γ(A|γ)|Ψ1(A|γ, Aγ)|2
)1/2(

∫

Aγ

dµ0γ(A|γ)|Ψ′1(αtγ (A|γ), αtγ (Aγ))|
2
)1/2

.

(L.-19)

A similar result holds for functions [Ψ2(Aγ)](A
′
|γ) = Ψ2(A

′
|γ, A|γ) in L2(A

′

γ , dµ0γ). From
now on let us use the notation

∫

Aγ

dµ0γ(A|γ)|Ψ1(A|γ, Aγ)|2 = ‖Ψ1(Aγ)‖2
|γ.

We can simplify the second factor on the R.H.S. of (L.-19) from the fact that

∫

Aγ

dµ0γ(A|γ)|Ψ′1(αtγ (A|γ), αtγ (Aγ))|2 =

∫

Aγ

dµ0γ(A|γ)|Ψ′1(A|γ, αtγ (Aγ))|2 = ‖Ψ′1(αtγ (Aγ))‖2
|γ

To prove this expand ψ′1 into spin-network functions

ψ′1(A) = Ψ′1(A|γ, A|γ) =
∞
∑

n=1

znTsn
(A).

Then the integral becomes

∫

Aγ

dµ0γ(A|γ)|Ψ′1(αtγ (A|γ), αtγ (Aγ))|
2

=
∞
∑

m,n=1

zmzn

∫

Aγ

dµ0γ(A|γ)Tsm
(αtγ (A))Tsn

(αtγ (A)). (L.-19)

The integration with measure dµ0γ(A|γ) over Aγ reduces to integration with the Haar

measure over the space G|E(γ(sm)∪γ(sn)∪γ)−E(γ)|. Note first that by the bi-invariance of
the Haar measure, for any e′ ∈ E(γ(sm) ∪ γ(sn) ∪ γ) − E(γ) it follows then, writing
Emn(γ) ≡ E(γ(sm) ∪ γ(sn) ∪ γ) − E(γ), that
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∞
∑

m,n=1

zmzn

∫

Aγ

dµ0γ(A|γ)Tsm
(αtγ (A)) Tsn

(αtγ (A))

=
∞
∑

m,n=1

zmzn

∫

G|Emn(γ)|

∏

e′∈Emn(γ)

dµH(he′)Tsm
({ete

′
j (tγ )τjhe′}, {et

e
jτjhe}) Tsn

{ete
′

j (tγ )τj (he′}, {et
e
jτjhe})

=
∞
∑

m,n=1

zmzn

∫

G|Emn(γ)|

∏

e′∈Emn(γ)

dµH(he′)Tsm
({he′}, {et

e
jτjhe}) Tsn

(he′}, {et
e
jτjhe})

=
∞
∑

m,n=1

zmzn

∫

Aγ

dµ0γ(A|γ)Tsm
(A|γ, αtγ (A|γ)) Tsn

(A|γ, αtγ (A|γ))

=

∫

Aγ

dµ0γ(A|γ)|Ψ′1(A|γ, αtγ (A|γ))|
2 (L.-22)

We now exploit that

αtγ (A|γ) = {etejτjA(e)}e∈E(γ)

and introduce new integration variables A′(e) := g(te)A(e) where g(te) = exp(tejτj). Since
by definition

dµ(tγ) =
∏

e∈E(γ)

dµ(te) =
∏

e∈E(γ)

dµH(g(te))

we can estimate further

|(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ| ≤

∫

G|E(γ)|

∏

e∈E(γ)

dµH(ge)

∫

Aγ

dµ0γ(A|γ)

× ‖Ψ1(A|γ)‖|γ ‖Ψ′1({geA(e)}e∈E(γ))‖|γ
× ‖Ψ2(A|γ)‖|γ ‖Ψ′2({geA(e)}e∈E(γ))‖|γ

=

[

∫

Aγ

dµ0γ(A|γ) ‖Ψ1(A|γ)‖γ ‖Ψ2(A|γ)‖γ

]

×
[

∫

Aγ

dµ0γ(A
′
|γ) ‖Ψ′1(A′|γ)‖γ ‖Ψ′2(A′|γ)‖γ

]

≤ ‖ ‖Ψ1‖γ ‖γ ‖ ‖Ψ′1‖γ ‖γ‖ ‖Ψ2‖γ ‖γ ‖ ‖Ψ′2‖γ ‖γ (L.-26)

where we have used Fubini’s theorem and have again applied the Cauchy-Schwarz in-
equality to functions in L2(Aγ , dµ0γ). But
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‖ ‖Ψ1‖γ ‖2
γ =

∫

Aγ

dµ0γ(A|γ) | ‖Ψ1(A|γ)‖γ |2

=

∫

Aγ

dµ0γ(A|γ)

∫

Aγ

dµ0γ(A|γ)|Ψ1(A|γ, A|γ)|2

=

∫

A

dµ0(A)|ψ1(A)|2 = ‖ψ1‖2
H0

(L.-28)

ii)

If all functions in question are cylindrical L2−functions over γ then the integrals over A|γ
are trivial and () simplifies to

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ =

∫

Dγ

dµ(tγ)

∫

Aγ

dµ0γ(A|γ)Ψ1(Aγ)[Wγ(tγ)Ψ
′
1](Aγ)Ψ2(Aγ)[Wγ(tγ)Ψ

′
2](Aγ)

=

∫

Aγ

dµ0γ(A|γ)

∫

Aγ

dµ0γ(A
′
|γ)Ψ1(Aγ)Ψ

′
1(A

′
γ)Ψ2(Aγ)Ψ

′
2(A

′
γ)

= [

∫

A

dµ0(A)ψ2(A)ψ1(A)] [

∫

A

dµ0(A
′)ψ′2(A

′)ψ′1(A
′)]

= < ψ2, ψ1 >H0
< ψ′1, ψ

′
2 >H0

(L.-30)

Theorem L.12.3

Proof:

Proof was given in chapter 3.

L.12.1 Fleischhack

Regular: Weyl representation is weakly continuous - said to be regular.

Stone-von Neuman theorem says that if a representation is regular and irreducible then
the representation is unique.

Quantum geometry:
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1. diffeomorphism invariant;

2. regular;

3. irreducible;

4. semianalytic - stratified diffeomorphisms.

L.12.2 Properties of the Kinematic Hilbert Space

space
Hilbert

basis
spin network

Inductive limit
characterization

space
GNS Hilbert

C*−algebraic
characterization

characterization
Projective limit

on 

space of square
integrable functions

functional
characterization

Positive Linear

The Kinematic 

Hilbert space

A

Figure L.30: KinHilbFig.

Spin networks states provide a natural decomposition of H̃0 into finite dimensional sub-
spaces each of which can be identified with the space of states of a spin-system. This
simplifies various constructions and calculations enermoursly.

L.13 Grassmann Integration

Grassmann Algebra

We consider a set of anticommutating Grassmann variables {ζi}i=1,...,n, with complex
linear coefficients, where n is the dimension of the algebra. The decisive relation defining
the structure of the algebra is the anticommutation relation

ζiζj + ζjζi = 0 (L.-30)
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for all i and j. As a particular consequence of this condition the square and all higher
powers of a variable vanish,

ζ2
i = 0 (L.-30)

The Grassmann algebra generate a Grassmann algebra of functions which have the form

f(ζ) = f (0) +
∑

i

f
(1)
i +

∑

i1<i2

f
(2)
i1i2
ζi1ζi2 + ...+ f (n)ζi1ζi2 ...ζin (L.-30)

where the coefficients f (k) are ordinary complex numbers.

On this algebra we will need to define the derivative. We first consider a simple Grassmann
algebra of order n=2 with the variables ζ1 and ζ2.

f(ζ1, ζ2) = f (0) + f
(1)
1 ζ1 + f

(1)
2 ζ2 + f (2)ζ1ζ2

∂f

∂ζ1
= f

(1)
1 + f (2)ζ2,

∂f

∂ζ1
= f

(1)
2 − f (2)ζ1. (L.-30)

Note the minus sign in the last equation of (L.13). The general rule for differentiation of
a product is given by

∂

∂ζj
ζi1ζi2 ...ζim = δji1ζi2...ζim − δji2ζi1ζi3...ζim + ...+ (−1)m−1δji2ζi1ζi2...ζim−1

(L.-30)

The respective factor ζik is anticommuted to the left until the derivative operator can be
directly applied. We may prove the following properties of the derivatives

∂

∂ζi

∂

∂ζj
+

∂

∂ζj

∂

∂ζi
= 0 (L.-30)

∂

∂ζi
ζj + ζj

∂

∂ζi
= 0 (L.-30)
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Grassmann integration

An attempt to to introduce an indefinite integral as the inverse of differentiation is bound
to fail. This illustrated by the fact that according to (L.13) the second derivative of any
Grassmann function vanishes, so that the inverse operation does not exist.

We must be content with some formal definition. One way to arrive at it is to require
that integration be translationally invariant. For an arbitrary function g(ζ) = g1 + g2ζ
we have

∫

dζg(ζ + η) =

∫

dζ [g1 + g2(ζ + η)] =

∫

dζ [g1 + g2ζ ] +

∫

dζg2η

=

∫

dζg(ζ) +

[
∫

dζ1

]

g2η =

∫

dζg(ζ) (L.-30)

The translational invariance requires the integral of 1 is zero. The following postulates
uniquely fix the value of any integral.

∫

dζ1 = 0, (L.-30)

∫

dζζ = 1. (L.-30)

Eq. (L.13) comes from the condition of translational invariance. The sole non-vanishing
integral

∫

dζζ arbitrarily is assigned the value 1. This is a convenient normalisation
condition.

We see that integration is equivalent to differentiation. Generalising integration rules to
higher dimensions straightforward

∫

dζi1 = 0, (L.-30)

∫

dζiζj = δij. (L.-30)

Note that the differentials dζi must anticommute with all other Grassmann variables as in-
tegration is equivalent to differentiation. In order to obtain analog results of conventional
integration we introduce complex Grassmann variables. Let us start with two disjoint sets
of Grassmann variables ζ∗1 , ..., ζ

∗
n and ζ1, ..., ζn, which are all mutually anticommutating
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{ζi, ζj} = {ζ∗i , ζ∗j } = {ζi, ζ∗j } = 0 (L.-30)

The two sets are related, using complex cunjugation, according to

(ζi)
∗ = ζ∗i ,

(ζ∗i )
∗ = −ζi,

(ζi1ζi2...ζim)∗ = ζ∗im ...ζ
∗
i2
ζ∗i1

(λζi)
∗ = λ∗ζ∗i (L.-32)

where λ is a complex number.

In order to develop functional integral formalism for Grassmann fields we need to solve
Gaussian integrals.

∫ N
∏

k=1

(dζ∗kdζk) exp

{

−
N
∑

k,l=1

ζ∗kMklζl

}

(L.-32)

To simplify the notation, let us write this as

I =

∫

[dζ∗dζ ]e−ζ
∗Mζ (L.-32)

The calculation in principle is very simply because grassmann functions can at worst
be linear in each variable, causing the series expansion of the exponential function to
terminate. On the other hand , according to the rules for Grassmann integration, the
integrand must contain as many different Grassmann variables as there are integrals or
else the overall integration vanishes. For the case of two pairs of variables one effectively
has

eζ
∗Mζ → 1

2!
(ζ∗Mζ)2

→ 1

2!
(ζ∗1M11ζ1ζ

∗
1M12ζ2ζ

∗
2M21ζ1ζ

∗
2M22ζ2)

→ (M11M22 −M12M21)ζ
∗
1ζ1ζ

∗
2ζ2 (L.-33)

where the last line follows from the anticommutating character of the Grassmann numbers.
The integration of ζ∗1ζ1ζ

∗
2ζ2, gives unity, and so for this case
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∫

[dζ∗dζ ]e−ζ
∗Mζ = detM (L.-33)

One should suspect that this result holds in general. For the case of N pairs of variables,
only the term of order (ζ∗Mζ)N survives in the expansion of the exponential. Moreover,
only the terms which are multilinear in all the ζ∗k , ζk can contribute and, in view of the an-
ticommutativity of the Grassmann variables, these terms contain the appropriately signed
products of matrix elements which define the determinant. But rather than go through
this combinatorial exercise we will follow the method given in (Brown QFT).(page83)
which is presented in Appendix(B). We do obtain the expected result:

I =

∫ N
∏

k=1

(dζ∗kdζk)e
−ζ∗Mζ = detM (L.-33)

This should be compared to the ordinary integration where the corresponding integral
gives detM−1.

L.13.1 Grassmann generating Functional

It is not surprising that the Gaussian integral formula (L.13) can be generalised to the
case of general bilinear forms in the exponent:

∫ N
∏

k=1

(dζ∗kdζk) exp−ζ∗Mζ = detMe−
1
2
ρTA−1ρ. (L.-33)

Here ρ is an n-component vector of Grassmann variables. Equation (L.13.1) is obtained
by translating the integration variable, ζ ′ = ζ + A−1ρ.

The construction of functional integration in section (4.1.2) did not make use of any
special properties of the integration over field variables which might restrict the validity
to ordinary c-numbers.

∫

Dχ̄Dχ exp
[

−
∫

ddx′ ddxχ̄(x′)A(x′, x)χ(x) +
∫

ddx(ρ̄(x)χ(x) + χ̄(x)ρ(x))
]

= detA exp
[∫

ddx′ ddxρ̄(x′)A−1(x′, x)ρ(x)
]

.
(L.-33)

in which the measure is ∝ ∏
r
dϕ̄(r)dϕ(r) and Z(ρ = 0) = detA. Note that to normalise

the functional we divide by detA as apposed to det(A−1) in the bosonic case (??).
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It is rather straightforward to extend the results of esction 4.1 to the fermionic case: The
Grassmann functional derivative is defined

δG[χ(y)]

δχ(x)
= lim

∆Vi→0

∂G

∂χi
where x is located in cell ∆Vi (L.-33)

The (2n)-point correlators

G(2n)(y1, . . . , yn; x1, . . . , xn) = 〈χ(yn), . . . , χ(y1); χ̄(x1), . . . , χ̄(xn)〉 (L.-33)

can now be obtained by forming derivatives of the generating functional 1

G(2n)(y1, . . . , yn; x1, . . . , xn) =
δ2nZ[ρ, ρ̄]

δρ(xn) · · · δρ(x1)δρ̄(y1) · · · δρ̄(yn)

∣

∣

∣

∣

ρ=ρ̄=0

. (L.-33)

We could in fact use the Grassmann formalism instead of the Bosonic functional integral
with the replica trick to do our calculations without too much adjustment. But we intro-
duced the Grassmann function integral here to help form the supersymmetric formalism.

What about operators that act on this Hilbert space? All operators that are well defined
on that Hilbert space arise from consistent family of operators. These operators on each
of these individual finite Hilbert spaces fit together in a certain way. If it is well defined
on here then it can be shown that that they come from something that fits together in
this way.

L.14 Biblioliographical notes

In this chapter I have relied on the following refferences:

infinite product measures: Probability theory, S.R.S. Varadhan downloaded from www.math.nyu.edu/facult

L.15 Worked Exercises and Details

1The order of the derivatives was chosen in such that we get agreement with the bosionic case. This
is not a trivial matter as the Grassmann derivatives δ/δρ(x) and δ/δρ(x) anticommute with the field
variables χ(x) and χ̄(x). One can show, however, that there is an even number of commutations when
we carry out the differentiations of (L.13.1) and write the result in the form (L.13.1).
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Curves (Thiemann)

a)

Despite the name, composition and inversion does not equip C with a group structure for many
reasons.

i) Verify that composition is not associative and that the curve c ◦ c−1 is not simply b(c) but
rather a retracing.

ii) Moreover, contemplate that C does not have a unit and that not every two elements can be
composed.

b)

Define composition and inversion of paths by taking the equivalence class of the compositions
and inversions of any of their representatives and check that this definition is well defined.

Check that then composition of paths is associtive and that p ◦ p−1 = b(p). However, P still
does not have a unit and still not every two elements can be composed.

c)

Let Obj:= σ and for each x, y ∈ Σ let Mor(x, y) := {p ∈ P : b(p) = x, f(p) = y}. Recall the
mathematical definition of a category (section ??) and conclude that P is a category in which
every morphism is invertible, that is, a groupoid.

d)

Define the relation ≺ on Γ by saying that γ ≺ γ′ if and only if every e ∈ E(γ) is a finite
composition of the e′ ∈ E(γ′) and their inverses.

Verify that ≺ equips Γ with the structure of a directed set, that is, for each γ, γ′ ∈ Γ we find
γ′′ ∈ Γ such that γ, γ′ ≺ γ′′.

For this to work, analyticity of the curve representatives is crucial. Smooth curves can intersect
in Cantor sets and thus define graphs which are no longer finitely generated. Show first that
this is not possible for analytic curves.

Answers:

a)

Bochner-Minlos

The characteristic function P̃m the Fourier transformation of the probability function:
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P̃m =
∑

l

Ple
ilm (L.-33)

Pl =
∑

m

P̃me−iml (L.-33)

say we also have P̃ ′m

Pl =
∑

m

P̃ ′me−iml (L.-33)

0 = Pl − Pl =
∑

m

(P̃m − P̃ ′m)e−iml =
∑

m

ame−iml (L.-33)

We wish to show that the above condition can only hold if the coefficients am = P̃m− P̃ ′m vanish.
Multiply both sides by em

′l and sum over l,

0 =
∑

l

∑

m

ame−i(m−m
′)l =

∑

m

am(
∑

l′

e−i(m−m
′)l) =

∑

m

amδmn = an (L.-33)

Details: Operator identity

Prove the operator equation

e−B̂ÂeB̂ (L.-33)

e−tB̂ÂetB̂ = I + tĈ1 +
t2

2!
Ĉ2 + · · · (L.-33)

e−(t+δt)B̂Âe(t+δt)B̂ − e−tB̂ÂetB̂ = δt(e−tB̂ÂB̂etB̂ − e−tB̂B̂ÂetB̂) (L.-33)

Ĉ1 =
d

dt

(

e−tB̂ÂetB̂
)

|t=1 = {Â, B̂} (L.-33)

d2

dt2

(

e−tB̂ÂetB̂
)

=
d

dt

(

e−tB̂{Â, B̂}etB̂
)

=
(

e−tB̂{{Â, B̂}, B̂}etB̂
)

(L.-33)
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dn

dtn

(

e−tB̂ÂetB̂
)

=
(

e−tB̂{Â, B̂}netB̂
)

(L.-33)

Ĉn = {Â, B̂}n (L.-33)

Details: The integral

I =

∫ ∞

−∞

dx

(

sin x

x

)2

(L.-33)

∫ ∞

−∞

dx

(

sin x

x

)2

=
[

− sin2 x
1

x

]∞

−∞
+

∫ ∞

−∞

dx
2 sin x cos x

x

=

∫ ∞

−∞

dx
sin 2x

x

=

∫ ∞

−∞

dy
sin y

y
(L.-34)

Can be evaluated using complex...

I =

(
∫

C

dz
eiz

2iz
−
∫

C

dz
e−iz

2iz

)

=

(
∫

C1

dz
eiz

2iz
−
∫

C2

dz
e−iz

2iz

)

(L.-34)

Poisson’s formula.

Cauchy’s integral formula

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ (L.-34)

From Cauchy’s integral formula, an explicit solution for the Dirichlet problem for a cirular region
can be obtained. Without loss of generality, the circle can be taken to be of unit radius and
centred at the origin. Let z = eiα, ζ = eit, r < 1.

f(z) = u(r, α) + iv(r, α)
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Figure L.31: sin x/x.

Then since dζ = iζdt, (L.15) gives

f(z) =
1

2π

∫ 2π

0

f(ζ)ζ

ζ − z
dt (L.-34)

But since z is inside the unit circle, 1/z∗ is outside it, so that

0 =
1

2π

∫ 2π

0

f(ζ)ζ

ζ − 1/z∗
dt (L.-34)

or

0 =
1

2π

∫ 2π

0

f(ζ)

ζ − 1/z∗
dζ (L.-34)

Consequently using η = 1/ζ∗, (note η = eit = 1/(eit)∗ = 1/η∗)

1

2πi

∫ 2π

0

f(ζ)ζ

ζ − 1/z∗
dt =

1

2πi

∫ 0

2π

f(1/η∗)(1/η∗)z∗

z∗/η∗ − 1
dt

= − 1

2πi

∫ 0

2π

f(1/η∗)z∗

η∗ − z∗
dt

=
1

2πi

∫ 2π

0

f(η)z∗

η∗ − z∗
dt (L.-35)

we arrive at

0 =
1

2π

∫ 2π

0
f(ζ)

z∗

ζ∗ − z∗
dt (L.-35)
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adding or subtracting this to (L.15)

f(z) =
1

2π

∫ 2π

0
f(ζ)

(

ζ

ζ − z
± z∗

ζ∗ − z∗

)

dt (L.-35)

Taking first the positive sign in (L.15),

ζ

ζ − z
+

z∗

ζ∗ − z∗
=

ζ(ζ∗ − z∗) + z∗(ζ − z)

|ζ − z|2 =
|ζ|2 − |z|2
|ζ − z|2 ,

we obtain

f(z) =
1

2π

∫ 2π

0
f(ζ)

1 − |ζ|2
|ζ − z|2 dt (L.-35)

But the factor multiplying f(ζ) is purely real, so that the process of taking the real part gives

u(r, α) =
1

2π

∫ 2π

0
u(t)

1 − r2

|eti − reiα|2 dt

=
1

2π

∫ 2π

0
u(t)

1 − r2

1 − 2r cos(α − t) + r2
(L.-35)

where u(t) is the value of the harmonic function u on the boundary. This result, which solves
the Dirichlet problem for the circle, is known as Poison’s formula.

If in (L.15) we take the negative sign,

ζ

ζ − z
− z∗

ζ∗ − z∗
=

ζ(ζ∗ − z∗) − z∗(ζ − z)

|ζ − z|2 =
|ζ|2 + |z|2 − 2ζz∗

|ζ − z|2

we shall obtain the conjugate function v in terms of u(t),

v(r, α) = v(0) +
1

π

∫ 2π

0
f(ζ)

1 − 2ζz∗ + |z|2
|ζ − z|2 dt

=
1

2π

∫ 2π

0

(

1 +
2iIm(zζ∗)

|ζ − z|2
)

dt (L.-35)

Consequently,

v(r, α) =
1

2π

∫ 2π

0
u(t)

r sin(α − t)

1 − 2r cos(α − t) + r2
dt (L.-35)
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Finally we obtain f(z) in terms of u(t), by combining the two results for u and v,

f(z) = iv(0) +
1

2π

∫ 2π

0
u(t)

ζ + z

ζ − z
dt (L.-35)
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